Artificial Intelligence for Detecting Pulmonary Embolisms via CT: A Workflow-oriented Implementation

工作流程 计算机科学 人工智能 放射科 医学 数据库
作者
Selim Abed,Klaus Hergan,J. Dörrenberg,Lucas Brandstetter,Marcus Lauschmann
出处
期刊:Current Medical Imaging Reviews [Bentham Science Publishers]
卷期号:21
标识
DOI:10.2174/0115734056367860250630072749
摘要

Introduction: Detecting Pulmonary Embolism (PE) is critical for effective patient care, and Artificial Intelligence (AI) has shown promise in supporting radiologists in this task. Integrating AI into radiology workflows requires not only evaluation of its diagnostic accuracy but also assessment of its acceptance among clinical staff. Objective: This study aims to evaluate the performance of an AI algorithm in detecting pulmonary embolisms (PEs) on contrast-enhanced computed tomography pulmonary angiograms (CTPAs) and to assess the level of acceptance of the algorithm among radiology department staff. Methods: This retrospective study analyzed anonymized computed tomography pulmonary angiography (CTPA) data from a university clinic. Surveys were conducted at three and nine months after the implementation of a commercially available AI algorithm designed to flag CTPA scans with suspected PE. A thoracic radiologist and a cardiac radiologist served as the reference standard for evaluating the performance of the algorithm. The AI analyzed 59 CTPA cases during the initial evaluation and 46 cases in the follow-up assessment. Results: In the first evaluation, the AI algorithm demonstrated a sensitivity of 84.6% and a specificity of 94.3%. By the second evaluation, its performance had improved, achieving a sensitivity of 90.9% and a specificity of 96.7%. Radiologists’ acceptance of the AI tool increased over time. Nevertheless, despite this growing acceptance, many radiologists expressed a preference for hiring an additional physician over adopting the AI solution if the costs were comparable. Discussion: Our study demonstrated high sensitivity and specificity of the AI algorithm, with improved performance over time and a reduced rate of unanalyzed scans. These improvements likely reflect both algorithmic refinement and better data integration. Departmental feedback indicated growing user confidence and trust in the tool. However, many radiologists continued to prefer the addition of a resident over reliance on the algorithm. Overall, the AI showed promise as a supportive “second-look” tool in emergency radiology settings. Conclusion: The AI algorithm demonstrated diagnostic performance comparable to that reported in similar studies for detecting PE on CTPA, with both sensitivity and specificity showing improvement over time. Radiologists’ acceptance of the algorithm increased throughout the study period, underscoring its potential as a complementary tool to physician expertise in clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Singularity应助qwert采纳,获得10
1秒前
scofield完成签到,获得积分10
2秒前
周周发布了新的文献求助10
2秒前
诺u发布了新的文献求助10
4秒前
4秒前
甜美三娘完成签到,获得积分10
5秒前
5秒前
6秒前
迟暮完成签到 ,获得积分10
6秒前
希望天下0贩的0应助LYW采纳,获得30
7秒前
tdou完成签到,获得积分10
7秒前
ll123发布了新的文献求助10
7秒前
7秒前
正己化人应助谦让谷兰采纳,获得10
8秒前
江恋完成签到,获得积分10
8秒前
蓝色发布了新的文献求助10
9秒前
10秒前
滚筒洗衣机完成签到,获得积分20
10秒前
星辰大海应助nofear采纳,获得10
10秒前
10秒前
大个应助1313131采纳,获得10
10秒前
11秒前
嘉敏完成签到,获得积分10
11秒前
DamenS发布了新的文献求助10
12秒前
13秒前
科研通AI6应助江恋采纳,获得10
13秒前
天易车网官网完成签到,获得积分10
13秒前
知性的土豆完成签到,获得积分10
14秒前
英姑应助qwert采纳,获得10
14秒前
柯南完成签到,获得积分10
14秒前
周周发布了新的文献求助80
14秒前
15秒前
16秒前
狂野的河马完成签到,获得积分10
16秒前
G7sunny发布了新的文献求助10
17秒前
huco完成签到,获得积分10
17秒前
赵婧完成签到 ,获得积分20
17秒前
倒头就睡不醒完成签到,获得积分10
17秒前
勤奋的松鼠完成签到,获得积分10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Bacillus subtilis and Other Gram‐Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics 400
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4852530
求助须知:如何正确求助?哪些是违规求助? 4150699
关于积分的说明 12858430
捐赠科研通 3899061
什么是DOI,文献DOI怎么找? 2142748
邀请新用户注册赠送积分活动 1162535
关于科研通互助平台的介绍 1062969