Molecular clustering and prognostic features based on integrated databases predict survival and immune status in patients with gastric cancer

癌症 免疫系统 医学 聚类分析 肿瘤科 内科学 计算机科学 免疫学 人工智能
作者
Yin Shi,Jiaying Zhou,Katrina Jia,Hao Song,Tianlong Zhang,Weiwei Yuan,Jiahao Ge
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:15
标识
DOI:10.3389/fonc.2025.1642911
摘要

Gastric cancer (GC) remains one of the most common malignancies worldwide with high mortality rates despite advances in treatment approaches. Patients frequently develop drug resistance to current therapies, highlighting the critical need for novel prognostic biomarkers that can enhance survival rates and guide immunotherapy decisions in patients with GC. We conducted a comprehensive bioinformatics analysis using integrated clinical data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. GC cases were categorized into two prognostic-related gene (PRG) clusters, and differentially expressed genes were identified. We established a prognostic model based on 11 key genes, stratified patients into high-risk and low-risk groups, and developed a nomogram model for survival prediction. Expression of selected genes was validated through quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry in clinical samples. The identified PRGs and gene clusters strongly associated with patient survival, immune system functions, and cancer-related pathways. Risk scores significantly correlated with immune cell abundance, checkpoint expression, and responses to immunotherapy and chemotherapy. For instance, the area under the curve (AUC) values of patients at 1-year, 3-year, and 5-year survival were all greater than 0.6 in the ROC curves (p < 0.05), which makes our prediction more accurate, and the line graphs predicted a 1-year survival rate exceeding 0.907, a 3-year survival rate exceeding 0.726, and a 5-year survival rate exceeding 0.633; the calibration curves are almost close to the predicted ones (p < 0.05). This implies that patients in the high-risk group demonstrated significantly poorer prognosis. Univariate Cox (UniCox) analysis and multivariate Cox (MultiCox) analysis indicate that CTHRC1 (Collagen Triple Helix Repeat Containing 1), CST6 (Cystatin E/M), and AKR1B1 (Aldo-Keto Reductase Family 1 Member B) are independent prognostic factors, and all are associated with poor survival prognosis (HR > 1, p < 0.05). Gene set enrichment analysis (GSEA) and single-cell analysis revealed significant enrichment of multiple biological pathways and variability in expression of these genes across different cell types within the tumor microenvironment. qRT-PCR and immunohistochemistry confirmed significant differences in mRNA and protein expression of CTHRC1, CST6, and AKR1B1 between normal and GC tissues (p < 0.05). Our research establishes a robust molecular signature for predicting survival of patients with GC and characterizing the tumor immune microenvironment. It aims not only to establish a prognostic model, but also to explore immunobiological functions. The identified prognostic features and key genes (CTHRC1, CST6, and AKR1B1) offer potential as biomarkers and therapeutic targets, potentially guiding more effective personalized treatment strategies for patients with GC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyq完成签到,获得积分10
刚刚
jing完成签到,获得积分10
刚刚
ding应助典雅的俊驰采纳,获得10
刚刚
1秒前
1秒前
奋进的熊完成签到,获得积分10
1秒前
1秒前
安小敏发布了新的文献求助20
1秒前
敏感代云发布了新的文献求助10
1秒前
1秒前
不许冒饭完成签到,获得积分10
2秒前
2秒前
3秒前
我是老大应助wwww采纳,获得10
3秒前
传奇3应助橘子采纳,获得10
3秒前
ding应助123采纳,获得10
4秒前
DI完成签到,获得积分10
4秒前
5秒前
5秒前
麦麦泰完成签到,获得积分20
5秒前
AMLYB666完成签到,获得积分10
5秒前
4354关注了科研通微信公众号
5秒前
5秒前
不吃香菜完成签到,获得积分10
6秒前
残雪发布了新的文献求助10
6秒前
6秒前
张小馨完成签到 ,获得积分10
6秒前
6秒前
7秒前
7秒前
郑大钱发布了新的文献求助10
7秒前
7秒前
阳光的雪碧完成签到,获得积分10
8秒前
铱铱的胡萝卜完成签到,获得积分10
8秒前
不许冒饭发布了新的文献求助10
8秒前
科目三应助失眠的灵寒采纳,获得10
8秒前
王佳鑫发布了新的文献求助10
9秒前
9秒前
favoury发布了新的文献求助30
9秒前
领导范儿应助elfff采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5071427
求助须知:如何正确求助?哪些是违规求助? 4292111
关于积分的说明 13373408
捐赠科研通 4112841
什么是DOI,文献DOI怎么找? 2252088
邀请新用户注册赠送积分活动 1257155
关于科研通互助平台的介绍 1189893