Synthetic Data Generated by Artificial Intelligence to Optimize Surgical Trial Design

医学 吻合 队列 临床试验 合成数据 人工智能 忠诚 外科 机器学习 计算机科学 内科学 电信
作者
Caterina Foppa,Saverio D’Amico,Mattia Delleani,Annalisa Maroli,Victor Savevski,M. Porta,Michele Carvello,Marco Montorsi,Alessandro Repici,Cesare Hassan,Antonino Spinelli
出处
期刊:Annals of Surgery [Ovid Technologies (Wolters Kluwer)]
卷期号:282 (5): 810-817 被引量:2
标识
DOI:10.1097/sla.0000000000006871
摘要

Objective: This study aimed to assess artificial intelligence (AI)-based synthetic data (SD) generation technology in surgery, evaluating the accuracy of the generated data and comparing the derived outcomes with real-world data. Summary Background Data: Trials evaluating new surgical techniques face numerous challenges. SD can play a pivotal role in optimizing clinical trial design, but must be used alongside real-world data to ensure accuracy. Transanal transection and single-stapled anastomosis (TTSS) is a technique with the potential to decrease the anastomotic leak (AL) rate over the double-stapled (DS) technique, according to preliminary data. Methods: The original data set included consecutive patients undergoing minimally invasive total mesorectal excision for rectal cancer with DS or TTSS anastomosis between 2010 and 2024. An AI-based generative model was trained to create high-fidelity SD, implemented and tested in a clinical trial setting using the 90-day AL rate as a primary endpoint. Results: We created a synthetic copy of the original cohort (n=653) using the real data to train the model and evaluate its performance using the Synthetic vAlidation FramEwork powered by Train. The comparison between synthetic versus real data demonstrated high statistical fidelity, clinical utility, and privacy preservation. We conditionally generated a balanced cohort (n=1200) with an equal number of patients for both types of anastomoses and strong performances using Synthetic Validation Framework powered by TrainTheSD analysis confirmed real data findings, showing a significantly lower AL rate in the TTSS cohort ( P <0.0001). Conclusions: AI-generated SD showed a high fidelity in replicating the statistical properties and complexity of the clinical features observed in the real-world population, being a very promising tool to improve surgical research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蕾蕾完成签到 ,获得积分10
1秒前
2秒前
Hashou完成签到,获得积分10
4秒前
白芷发布了新的文献求助10
6秒前
梦梦的小可爱完成签到 ,获得积分10
7秒前
8秒前
激动的老太完成签到,获得积分10
8秒前
9秒前
jajaqy发布了新的文献求助10
12秒前
zpc完成签到,获得积分10
13秒前
17秒前
黑炭球完成签到,获得积分10
18秒前
19秒前
20秒前
20秒前
20秒前
21秒前
张靖发布了新的文献求助10
21秒前
21秒前
21秒前
21秒前
21秒前
Z_jx完成签到,获得积分10
22秒前
隐形曼青应助科研通管家采纳,获得10
22秒前
华仔应助科研通管家采纳,获得20
22秒前
脑洞疼应助科研通管家采纳,获得10
22秒前
22秒前
情怀应助科研通管家采纳,获得10
23秒前
王十二发布了新的文献求助10
23秒前
24秒前
27秒前
anesthesist完成签到 ,获得积分10
29秒前
王明程完成签到,获得积分10
29秒前
35秒前
桐桐应助王十二采纳,获得10
36秒前
王明程发布了新的文献求助10
36秒前
淡然千山完成签到 ,获得积分10
37秒前
39秒前
科研通AI6.2应助CarolineSH采纳,获得10
39秒前
浮浮世世完成签到,获得积分10
39秒前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5848123
求助须知:如何正确求助?哪些是违规求助? 6233688
关于积分的说明 15622003
捐赠科研通 4964774
什么是DOI,文献DOI怎么找? 2676882
邀请新用户注册赠送积分活动 1621332
关于科研通互助平台的介绍 1577330