A deep learning approach to wall-shear stress quantification: from numerical training to zero-shot experimental application

零(语言学) 弹丸 剪应力 机械 培训(气象学) 计算机科学 材料科学 物理 气象学 哲学 语言学 冶金
作者
Esther Lagemann,Julia Roeb,Steven L. Brunton,Christian Lagemann
出处
期刊:Journal of Fluid Mechanics [Cambridge University Press]
卷期号:1014
标识
DOI:10.1017/jfm.2025.10150
摘要

The accurate quantification of wall-shear stress dynamics is of substantial importance for various applications in fundamental and applied research, spanning areas from human health to aircraft design and optimization. Despite significant progress in experimental measurement techniques and postprocessing algorithms, temporally resolved wall-shear stress fields with adequate spatial resolution and within a suitable spatial domain remain an elusive goal. Furthermore, there is a systematic lack of universal models that can accurately replicate the instantaneous wall-shear stress dynamics in numerical simulations of multiscale systems where direct numerical simulations (DNSs) are prohibitively expensive. To address these gaps, we introduce a deep learning architecture that ingests wall-parallel streamwise velocity fields at $y^+ \approx 3.9 \sqrt {Re_\tau }$ of turbulent wall-bounded flows and outputs the corresponding two-dimensional streamwise wall-shear stress fields with identical spatial resolution and domain size. From a physical perspective, our framework acts as a surrogate model encapsulating the various mechanisms through which highly energetic outer-layer flow structures influence the governing wall-shear stress dynamics. The network is trained in a supervised fashion on a unified dataset comprising DNSs of statistically one-dimensional turbulent channel and spatially developing turbulent boundary layer flows at friction Reynolds numbers ranging from $390$ to $1500$ . We demonstrate a zero-shot applicability to experimental velocity fields obtained from particle image velocimetry measurements and verify the physical accuracy of the wall-shear stress estimates with synchronized wall-shear stress measurements using the micro-pillar shear-stress sensor for Reynolds numbers up to $2000$ . In summary, the presented framework lays the groundwork for extracting inaccessible experimental wall-shear stress information from readily available velocity measurements and thus, facilitates advancements in a variety of experimental applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小惊麟完成签到,获得积分10
1秒前
11111112222完成签到,获得积分10
1秒前
yeurekar发布了新的文献求助10
1秒前
yu完成签到 ,获得积分10
1秒前
皮皮虾完成签到,获得积分10
1秒前
Anna完成签到,获得积分10
2秒前
大个应助JUGG采纳,获得10
2秒前
shais完成签到,获得积分10
2秒前
3秒前
决明子完成签到 ,获得积分10
3秒前
野原完成签到,获得积分10
3秒前
4秒前
小蘑菇应助za==采纳,获得10
4秒前
abcd_1067完成签到,获得积分10
4秒前
mechefy完成签到,获得积分10
4秒前
灵巧的飞雪完成签到 ,获得积分10
5秒前
mei完成签到,获得积分10
5秒前
元神完成签到 ,获得积分10
5秒前
5秒前
快乐小白菜完成签到,获得积分10
5秒前
英姑应助DKO253采纳,获得20
6秒前
威武蜜蜂发布了新的文献求助10
7秒前
8秒前
Lucas应助想飞的猪采纳,获得10
8秒前
南宫清涟完成签到,获得积分10
8秒前
Boris完成签到 ,获得积分10
9秒前
shineedou完成签到,获得积分10
9秒前
科研牛人完成签到,获得积分10
9秒前
10秒前
眠眠清完成签到 ,获得积分10
10秒前
陆易形完成签到,获得积分10
10秒前
10秒前
李伟完成签到,获得积分10
11秒前
xcm77发布了新的文献求助80
11秒前
茅瑜航发布了新的文献求助10
11秒前
橘淮北完成签到,获得积分10
11秒前
向日葵完成签到,获得积分10
11秒前
Mississippiecho完成签到,获得积分10
12秒前
迷路世立完成签到,获得积分10
12秒前
雪ノ下詩乃完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3946270
求助须知:如何正确求助?哪些是违规求助? 3491227
关于积分的说明 11059792
捐赠科研通 3222120
什么是DOI,文献DOI怎么找? 1780916
邀请新用户注册赠送积分活动 865894
科研通“疑难数据库(出版商)”最低求助积分说明 800083