已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Mapping tree species diversity in temperate montane forests using Sentinel-1 and Sentinel-2 imagery and topography data

遥感 卫星图像 比例(比率) 随机森林 环境科学 地图学 计算机科学 地理 人工智能
作者
Xiang Liu,Julian Frey,Catalina Munteanu,Nicole Still,Barbara Koch
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:292: 113576-113576 被引量:33
标识
DOI:10.1016/j.rse.2023.113576
摘要

Detailed information on spatial patterns of tree species diversity (TSD) is essential for biodiversity assessment, forest disturbance monitoring, and the management and conservation of forest resources. TSD mapping approaches based on the Spectral Variability Hypothesis (SVH) could provide a reliable alternative to image classification methods. However, such methods have not been tested in large-scale TSD mapping using Sentinel-1 and Sentinel-2 images. In this study, we developed a new workflow for large-scale TSD mapping in an approximately 4000 km2 temperate montane forest using Sentinel-1 and Sentinel-2 imagery-based heterogeneity metrics and topographic data. Through a systematic comparison of model performance in 24 prediction scenarios with different combinations of input variables, and a correlation analysis between six image heterogeneity metrics and two in-situ TSD indicators (species richness S and Shannon-Wiener diversity H′), we assessed the effects of vegetation phenology, image heterogeneity metrics, and sensor type on the accuracy of TSD predictions. Our results show that (1) the combination of Sentinel-1 and Sentinel-2 imagery produced higher accuracy of TSD predictions compared to the Sentinel-2 data alone, and that the further inclusion of topographic data yielded the highest accuracy (S: R2 = 0.562, RMSE = 1.502; H′: R2 = 0.628, RMSE = 0.231); (2) both Multi-Temporal and Spectral-Temporal-Metric data capture phenology-related information of tree species and significantly improved the accuracy of TSD predictions; (3) texture metrics outperformed other image heterogeneity metrics (i.e., Coefficient of Variation, Rao's Q, Convex Hull Volume, Spectral Angle Mapper, and the Convex Hull Area), and the enhanced vegetation index (EVI) derived image heterogeneity metrics were most effective in predicting TSD; and (4) the spatial distribution of TSD showed a clear decrease trend along the altitudinal gradient (r = −0.61 for S and − 0.45 for H′) and varied significantly among forest types. Our results suggest a good potential of the SVH-based approaches combined with Sentinel-1 and Sentinel-2 imagery and topographic data for large-scale TSD mapping in temperate montane forests. The TSD maps generated in our study will be valuable for forest biodiversity assessments and for developing management and conservation measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chu关闭了chu文献求助
刚刚
1秒前
LL发布了新的文献求助10
1秒前
maxi发布了新的文献求助10
1秒前
3秒前
3秒前
4秒前
4秒前
wangyinwaq发布了新的文献求助20
4秒前
Newky发布了新的文献求助30
5秒前
今后应助Tomma采纳,获得10
6秒前
6秒前
ly完成签到,获得积分10
7秒前
8秒前
8秒前
科研一霸发布了新的文献求助10
8秒前
Mercury应助柒咩咩采纳,获得10
9秒前
胡译文完成签到,获得积分10
9秒前
11秒前
麦兜完成签到 ,获得积分10
11秒前
12秒前
wickedzz发布了新的文献求助10
12秒前
科研一霸完成签到,获得积分10
15秒前
李健的小迷弟应助胡译文采纳,获得10
15秒前
SC完成签到,获得积分10
15秒前
Hiker发布了新的文献求助10
16秒前
17秒前
18秒前
LJC完成签到,获得积分10
18秒前
18秒前
ly发布了新的文献求助10
19秒前
24秒前
24秒前
j1kxm完成签到,获得积分10
25秒前
不要加糖发布了新的文献求助10
25秒前
27秒前
卉卉完成签到,获得积分10
27秒前
28秒前
orixero应助Hiker采纳,获得10
28秒前
脑洞疼应助wvwvwv采纳,获得10
30秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792253
求助须知:如何正确求助?哪些是违规求助? 3336501
关于积分的说明 10281144
捐赠科研通 3053220
什么是DOI,文献DOI怎么找? 1675522
邀请新用户注册赠送积分活动 803469
科研通“疑难数据库(出版商)”最低求助积分说明 761436