Automatic Calibration for Monocular Cameras in Highway Scenes via Vehicle Vanishing Point Detection

人工智能 计算机视觉 计算机科学 消失点 校准 稳健性(进化) 残余物 摄像机切除 点云 数学 算法 生物化学 基因 统计 图像(数学) 化学
作者
Wentao Zhang,Huansheng Song,Lichen Liu
出处
期刊:Journal of transportation engineering [American Society of Civil Engineers]
卷期号:149 (7) 被引量:3
标识
DOI:10.1061/jtepbs.teeng-7412
摘要

Automatic camera calibration is a fundamental technology for 3D traffic parameter extraction. With the popularity of pan-tilt-zoom cameras, this technique demonstrates great potential to enhance traffic safety and efficiency, especially for highways. This paper aims to present a fully automatic calibration method for surveillance cameras in highway scenes. Our system is divided into two stages. In the first stage, a deep convolution neural network was used to estimate a pair of orthogonal vanishing points from multiple vehicles. This process transformed vanishing point detection into an estimation of vehicle direction, which was further determined by introducing the central residual mechanism. In the diamond space, the straight lines formed by these directions accumulated the final positions of the vanishing points. More importantly, we proposed a novel algorithm for estimating the lane width using vehicle trajectories in the second stage. It can be used to calculate the camera height, making the calibration fully automated. We also corrected the distorted lens using vehicle trajectories. Comprehensive experiments were conducted on the proposed data set and the BoxCars116k data set. The results indicate that the composite mechanism (i.e., classification and central residual) significantly improves the accuracy and robustness of the vanishing point estimation. Combined with automatic camera height estimation, our technology is superior to the most representative methods in calibration performance. Since it does not have any constraints on road geometry and camera placement, our approach applies to most highway surveillance systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
kaikaiYelloew完成签到,获得积分20
3秒前
cdercder应助啊嘞哇塞采纳,获得10
4秒前
4秒前
4秒前
hixx发布了新的文献求助30
4秒前
4秒前
开心就吃猕猴桃完成签到,获得积分10
6秒前
Bailey发布了新的文献求助10
7秒前
8秒前
zeng完成签到,获得积分10
8秒前
8秒前
10秒前
11秒前
12秒前
14秒前
积极从蕾发布了新的文献求助10
16秒前
所所应助叶远望采纳,获得10
16秒前
17秒前
七里香应助文件撤销了驳回
17秒前
CG2021发布了新的文献求助10
18秒前
檀江完成签到 ,获得积分10
19秒前
共享精神应助Y哦莫哦莫采纳,获得10
21秒前
千俞完成签到 ,获得积分10
21秒前
22秒前
22秒前
TOO完成签到 ,获得积分10
25秒前
25秒前
甜美无剑发布了新的文献求助10
25秒前
26秒前
27秒前
小白应助Rjy采纳,获得20
28秒前
今后应助Zll采纳,获得10
30秒前
闲来逛逛007完成签到 ,获得积分10
31秒前
hachi发布了新的文献求助10
31秒前
aliaxs发布了新的文献求助10
32秒前
33秒前
34秒前
爱听歌采白完成签到,获得积分10
34秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784091
求助须知:如何正确求助?哪些是违规求助? 3329207
关于积分的说明 10240855
捐赠科研通 3044714
什么是DOI,文献DOI怎么找? 1671236
邀请新用户注册赠送积分活动 800193
科研通“疑难数据库(出版商)”最低求助积分说明 759241