生物扩散
消光(光学矿物学)
捕食
扩散
拉普拉斯变换
职位(财务)
动力学(音乐)
统计物理学
操作员(生物学)
捕食者
物理
数学物理
数学
生态学
数学分析
生物
量子力学
经济
光学
人口
人口学
社会学
声学
生物化学
财务
抑制因子
基因
转录因子
作者
Qinhe Fang,Hongmei Cheng,Rong Yuan
摘要
In this paper, we will consider the spatial dynamical behavior of a Leslie-Gower predator-prey model with nonlocal diffusion under shifting environments. Compared with the classical Laplace diffusion, we introduce the integral operator $ \int_{\mathbb{R}}J(x-y)u(t,y)dy-u(t,x) $ reflected the relationship between the position $ x $ and all other positions $ y $. By comparing the different spreading speed of species with the speed of environmental worsening, we get the different conditions for three situations of extinction of both species, existence of only one specie and coexistence of two species.
科研通智能强力驱动
Strongly Powered by AbleSci AI