亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Problem-Specific Knowledge Based Multi-Objective Meta-Heuristics Combined Q-Learning for Scheduling Urban Traffic Lights With Carbon Emissions

启发式 调度(生产过程) 计算机科学 运输工程 数学优化 人工智能 运筹学 工程类 数学 操作系统
作者
Zhongjie Lin,Kaizhou Gao,Naiqi Wu,Ponnuthurai Nagaratnam Suganthan
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (10): 15053-15064 被引量:5
标识
DOI:10.1109/tits.2024.3397077
摘要

In complex and variable traffic environments, efficient multi-objective urban traffic light scheduling is imperative. However, the carbon emission problem accompanying traffic delays is often neglected in most existing literature. This study focuses on multi-objective urban traffic light scheduling problems (MOUTLSP), concerning traffic delays and carbon emissions simultaneously. First, a multi-objective mathematical model is firstly developed to describe MOUTLSP to minimize vehicle delays, pedestrian delays, and carbon emissions. Second, three well-known meta-heuristics, namely genetic algorithm (GA), particle swarm optimization (PSO), and differential evolution (DE), are improved to solve MOUTLSP. Six problem-feature-based local search operators (LSO) are designed based on the solution structure and incorporated into the iterative process of meta-heuristics. Third, the problem nature is utilized to design two novel Q-learning-based strategies for algorithm and LSO selection, respectively. The Q-learning-based algorithm selection (QAS) strategy guides non-dominated solutions to obtain a good trade-off among three objectives and generates high-quality solutions by selecting suitable algorithms. The Q-learning-based local search selection (QLSS) strategies are employed to seek premium neighborhood solutions throughout the iterative process for improving the convergence speed. The effectiveness of the improvement strategies is verified by solving 11 instances with different scales. The proposed algorithms with Q-learning-based strategies are compared with two classical multi-objective algorithms and some state-of-the-art algorithms for solving urban traffic light scheduling problems. The experimental results and comparisons demonstrate that the proposed GA $+$ QLSS, a variant of GA, is the most competitive one. This research proposes new ideas for urban traffic light scheduling with three objectives by Q-learning assisted evolutionary algorithms firstly. It provides strong support for achieving more efficient and environmentally friendly urban traffic management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
earthai完成签到,获得积分10
1秒前
仁者无惧完成签到 ,获得积分10
8秒前
11秒前
小马甲应助科研通管家采纳,获得10
17秒前
21秒前
山橘月发布了新的文献求助10
26秒前
芝麻汤圆完成签到,获得积分10
31秒前
自然之水完成签到,获得积分10
44秒前
1分钟前
Kevin发布了新的文献求助10
1分钟前
糖伯虎完成签到 ,获得积分10
1分钟前
binyao2024完成签到,获得积分10
2分钟前
王子娇完成签到 ,获得积分10
2分钟前
穆振家完成签到,获得积分10
2分钟前
豌豆发布了新的文献求助10
2分钟前
3分钟前
don完成签到 ,获得积分10
3分钟前
豌豆发布了新的文献求助10
3分钟前
wanjingwan完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
也曦发布了新的文献求助10
4分钟前
11发布了新的文献求助10
4分钟前
11发布了新的文献求助10
4分钟前
4分钟前
5分钟前
krajicek发布了新的文献求助10
5分钟前
丰富的瑾瑜完成签到,获得积分10
5分钟前
flyingpig发布了新的文献求助10
5分钟前
krajicek完成签到,获得积分10
5分钟前
我是你爷爷完成签到,获得积分10
5分钟前
小白菜完成签到,获得积分10
5分钟前
5分钟前
andrele发布了新的文献求助10
5分钟前
5分钟前
SCUWJ完成签到,获得积分10
5分钟前
伍慕儿发布了新的文献求助10
5分钟前
orixero应助nhh采纳,获得10
5分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784795
求助须知:如何正确求助?哪些是违规求助? 3330055
关于积分的说明 10244180
捐赠科研通 3045395
什么是DOI,文献DOI怎么找? 1671660
邀请新用户注册赠送积分活动 800577
科研通“疑难数据库(出版商)”最低求助积分说明 759483