Dynamic Multimode Fiber Specklegram Sensor Smart Bed Enabled by Deep Learning

多模光纤 斑点图案 人工智能 光纤 深度学习 计算机视觉 计算机科学 卷积神经网络 纤维 材料科学 电信 复合材料
作者
Md. Nazmul Islam Sarkar,Linh V. Nguyen,Adam D. Kilpatrick,David G. Lancaster,Stephen C. Warren‐Smith
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:42 (18): 6342-6350
标识
DOI:10.1109/jlt.2024.3400286
摘要

Fiber specklegram sensors eliminate the need for complex optical interrogators by using a camera to capture images or videos of the speckle pattern at the end facet of a multimode optical fiber. A fiber specklegram sensor is highly sensitive to movement anywhere along the length of the fiber, yielding complex information on external perturbations. The ability of the fiber specklegram sensor to be laid over a large surface area and respond to movement at any location can be useful in many real life sensing problems. Until now, only static speckle images have been used to evaluate such perturbations. However, there are applications where intrinsically dynamic measurands are desired, requiring different approaches to the analysis. In this work, we utilized deep learning techniques to analyze dynamic speckle videos for applications in dynamic biomechanical sensing, which we demonstrated for respiration rate monitoring as a proof-of-concept. This application demands both wide area sensing, that is, coverage of a mattress, together with dynamic information. We achieve this by recording videos of speckle from a single multimode fiber that covers a mattress in an S-configuration, and train convolutional neural networks directly on the video data. We show that the fiber specklegram sensor combined with our deep learning model can accurately classify the respiration rate. This approach has wide reaching potential for other biomechanical healthcare applications, such as pressure sore prevention and continuous monitoring to reduce the risk of falls.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zjj发布了新的文献求助10
3秒前
Qvby3完成签到 ,获得积分10
3秒前
5秒前
zhy完成签到,获得积分10
7秒前
老驴拉磨完成签到,获得积分10
7秒前
FashionBoy应助zjj采纳,获得10
8秒前
体贴的向南完成签到,获得积分20
8秒前
哎呦呦仔发布了新的文献求助10
9秒前
joleisalau发布了新的文献求助20
12秒前
12秒前
15秒前
苦瓜柠檬冰茶完成签到 ,获得积分10
15秒前
丘比特应助叶远望采纳,获得10
15秒前
火炬计划发布了新的文献求助10
16秒前
小付完成签到,获得积分10
19秒前
哎呦呦仔完成签到,获得积分10
19秒前
cdercder应助骤雨时晴采纳,获得10
24秒前
hhh完成签到,获得积分10
26秒前
26秒前
26秒前
ANJING完成签到,获得积分10
27秒前
28秒前
陈饼饼发布了新的文献求助10
32秒前
KKKK完成签到,获得积分10
33秒前
威武安梦完成签到 ,获得积分10
33秒前
34秒前
852应助小金采纳,获得10
35秒前
核桃发布了新的文献求助10
35秒前
图雄争霸完成签到 ,获得积分10
38秒前
yang完成签到,获得积分10
40秒前
ANJING发布了新的文献求助10
43秒前
HBin完成签到,获得积分10
44秒前
45秒前
46秒前
kangkang完成签到,获得积分10
47秒前
cdercder应助ixueyi采纳,获得10
47秒前
李宣完成签到,获得积分10
47秒前
DT发布了新的文献求助10
48秒前
49秒前
50秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3839942
求助须知:如何正确求助?哪些是违规求助? 3382151
关于积分的说明 10521656
捐赠科研通 3101616
什么是DOI,文献DOI怎么找? 1708201
邀请新用户注册赠送积分活动 822278
科研通“疑难数据库(出版商)”最低求助积分说明 773223