神经影像学
认知
大脑发育
心理学
纵向数据
认知心理学
计算机科学
发展心理学
神经科学
数据挖掘
作者
Lin Li,Mohammadreza Bayat,Timothy Hayes,Wesley K. Thompson,Arianna M. Gard,Anthony Steven Dick
标识
DOI:10.1101/2024.06.12.598732
摘要
This paper addresses the challenges of managing missing values within expansive longitudinal neu-roimaging datasets, using the specific example of data derived from the Adolescent Brain and Cog-nitive Development (ABCD ® ) study. The conventional listwise deletion method, while widely used, is not recommended due to the risk that substantial bias can potentially be introduced with this method. Unfortunately, recommended alternative practices can be challenging to implement with large data sets. In this paper, we advocate for the adoption of more sophisticated statistical method-ologies, including multiple imputation, propensity score weighting, and full information maximum likelihood (FIML). Through practical examples and code using (ABCD ® ) data, we illustrate some of the benefits and challenges of these methods, with a review of how these advanced methodolo-gies bolster the robustness of analyses and contribute to the integrity of research findings in the field of developmental cognitive neuroscience.
科研通智能强力驱动
Strongly Powered by AbleSci AI