已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

RawECGNet: Deep Learning Generalization for Atrial Fibrillation Detection From the Raw ECG

人工智能 深度学习 计算机科学 心房颤动 一般化 心房扑动 机器学习 数学 医学 内科学 数学分析
作者
Noam Ben‐Moshe,Kenta Tsutsui,Shany Biton,Eran Zvuloni,Leif Sörnmo,Joachim A. Behar
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10
标识
DOI:10.1109/jbhi.2024.3404877
摘要

Introduction : Deep learning models for detecting episodes of atrial fibrillation (AF) using rhythm information in long-term ambulatory ECG recordings have shown high performance. However, the rhythm-based approach does not take advantage of the morphological information conveyed by the different ECG waveforms, particularly the f-waves. As a result, the performance of such models may be inherently limited. Methods : To address this limitation, we have developed a deep learning model, named RawECGNet, to detect episodes of AF and atrial flutter (AFl) using the raw, single-lead ECG. We compare the generalization performance of RawECGNet on two external data sets that account for distribution shifts in geography, ethnicity, and lead position. RawECGNet is further benchmarked against a state-of-the-art deep learning model, named ArNet2, which utilizes rhythm information as input. Results : Using RawECGNet, the results for the different leads in the external test sets in terms of the F1 score were 0.91–0.94 in RBDB and 0.93 in SHDB, compared to 0.89–0.91 in RBDB and 0.91 in SHDB for ArNet2. The results highlight RawECGNet as a high-performance, generalizable algorithm for detection of AF and AFl episodes, exploiting information on both rhythm and morphology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
库儿拉索发布了新的文献求助10
刚刚
ysys发布了新的文献求助10
刚刚
Hello应助1234采纳,获得10
5秒前
9秒前
13秒前
16秒前
18秒前
18秒前
关我屁事完成签到 ,获得积分10
20秒前
郭嘉彬发布了新的文献求助10
21秒前
1577发布了新的文献求助10
23秒前
1234发布了新的文献求助10
23秒前
科研通AI5应助壮观的含桃采纳,获得10
24秒前
27秒前
冰鱼完成签到,获得积分10
28秒前
zzc完成签到 ,获得积分10
28秒前
晚意完成签到 ,获得积分10
29秒前
1577完成签到,获得积分10
31秒前
Stata@R发布了新的文献求助10
32秒前
慕青应助张志伟采纳,获得10
33秒前
郭嘉彬完成签到,获得积分10
34秒前
35秒前
是小小李哇完成签到 ,获得积分10
36秒前
所所应助Stata@R采纳,获得10
39秒前
Ye发布了新的文献求助10
40秒前
KL完成签到,获得积分10
40秒前
领导范儿应助认真子默采纳,获得10
41秒前
柯萝完成签到,获得积分10
44秒前
45秒前
张志伟发布了新的文献求助10
50秒前
倷倷完成签到 ,获得积分10
50秒前
蛋泥完成签到,获得积分10
53秒前
53秒前
pass完成签到 ,获得积分10
54秒前
莫愁完成签到 ,获得积分10
55秒前
57秒前
乐乐应助安详的冬瓜采纳,获得10
1分钟前
1分钟前
科研通AI5应助木木采纳,获得10
1分钟前
sycsyc完成签到,获得积分10
1分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804086
求助须知:如何正确求助?哪些是违规求助? 3348895
关于积分的说明 10340859
捐赠科研通 3065101
什么是DOI,文献DOI怎么找? 1682882
邀请新用户注册赠送积分活动 808555
科研通“疑难数据库(出版商)”最低求助积分说明 764595