Deep Learning-based NSCLC Classification from Whole-Slide Images: Leveraging Expectation-Maximization and InceptionV3

计算机科学 人工智能 深度学习 最大化 期望最大化算法 模式识别(心理学) 计算机视觉 机器学习 最大似然 统计 数学 经济 微观经济学
作者
Kountay Dwivedi,Anshuman Gupta,Ankit Rajpal,Naveen Kumar
出处
期刊:Procedia Computer Science [Elsevier]
卷期号:235: 2422-2433 被引量:1
标识
DOI:10.1016/j.procs.2024.04.229
摘要

The standard-of-care treatment for Non-Small Cell Lung Cancer (NSCLC) is carried out via hematoxylin and eosin (H&E)-stained whole slide tissue images (WSI). These WSIs assist in classifying NSCLC into its prominent subtypes: adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC)– a process, though efective, yet cumbersome for the pathologists when performed manually. To assist medical practitioners, a robust Artificial intelligence-based model (such as convolutional neural networks (CNN)) could be utilized to classify WSIs automatically. However, training gigapixel-level WSIs directly on a CNN is computationally prohibitive. This work proposes a novel EM-Inception model for efficient classification of NSCLC WSIs via a decision fusion approach. For effective memory utilization, the WSIs are initially segmented into patches. Next, a subset of discriminative patches (high likelihood of having tumorous region) is identifed with the assistance of the InceptionV3-based model and the EM algorithm–the model training is started with all the patches of each WSI, consecutively executing the EM algorithm to retain only the discriminative patches based on the patch-level predictions of the model. Finally, the WSI-level predictions are obtained by aggregating the discriminative patch-level predictions using the voting method. Post-training, EM-Inception's classification efficacy is evaluated using 10-fold cross-validation. The proposed model achieves a classification performance of [0.87 ± 0.03] accuracy, [0.85 ± 0.12] specificity, [0.89±0.12] sensitivity, [0.87±0.03] balanced accuracy, [0.87±0.03] F1-score, and [0.917±0.03] AU-ROC score, each at 95% confidence level. The performance of the proposed model is also comparable to the state-of-the-art works. This illustrates the effectiveness of EM-Inception in lung cancer classification. As a future course of work, the eXplainable AI tools could be leveraged to provide deeper insights into the WSIs, such as highlighting the densely tumorous regions

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助herpes采纳,获得30
刚刚
童话发布了新的文献求助30
1秒前
科目三应助落骛采纳,获得10
1秒前
2秒前
2秒前
2秒前
2秒前
被门夹到鸟完成签到,获得积分10
4秒前
plasmid完成签到,获得积分10
5秒前
5秒前
高高完成签到,获得积分10
5秒前
萌新发布了新的文献求助10
7秒前
7秒前
流氓兔完成签到,获得积分10
9秒前
renyun发布了新的文献求助10
9秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
搜集达人应助kk子采纳,获得10
11秒前
小蘑菇应助菜菜酱爱火锅采纳,获得30
13秒前
ding应助齐桉采纳,获得30
14秒前
15秒前
西卡比巴卜完成签到,获得积分10
16秒前
落骛发布了新的文献求助10
17秒前
搞怪妙菱发布了新的文献求助10
19秒前
牛油果完成签到,获得积分10
20秒前
飘逸秋荷完成签到,获得积分10
23秒前
绿色催化完成签到,获得积分10
23秒前
充电宝应助俏皮汉堡采纳,获得10
24秒前
Parrot_PAI完成签到,获得积分10
24秒前
热沙来提发布了新的文献求助10
27秒前
沉默的阁发布了新的文献求助10
27秒前
27秒前
LN发布了新的文献求助10
28秒前
32秒前
33秒前
量子星尘发布了新的文献求助10
35秒前
36秒前
37秒前
Ztx发布了新的文献求助10
37秒前
无花果应助风中的静珊采纳,获得10
37秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3884653
求助须知:如何正确求助?哪些是违规求助? 3426918
关于积分的说明 10752225
捐赠科研通 3151829
什么是DOI,文献DOI怎么找? 1739865
邀请新用户注册赠送积分活动 839879
科研通“疑难数据库(出版商)”最低求助积分说明 785023