Optimizing large language models in digestive disease: strategies and challenges to improve clinical outcomes

疾病 重症监护医学 医学 计算机科学 内科学
作者
Mauro Giuffrè,Simone Kresevic,Nicola Pugliese,Kisung You,Dennis Shung
出处
期刊:Liver International [Wiley]
卷期号:44 (9): 2114-2124 被引量:12
标识
DOI:10.1111/liv.15974
摘要

Abstract Large Language Models (LLMs) are transformer‐based neural networks with billions of parameters trained on very large text corpora from diverse sources. LLMs have the potential to improve healthcare due to their capability to parse complex concepts and generate context‐based responses. The interest in LLMs has not spared digestive disease academics, who have mainly investigated foundational LLM accuracy, which ranges from 25% to 90% and is influenced by the lack of standardized rules to report methodologies and results for LLM‐oriented research. In addition, a critical issue is the absence of a universally accepted definition of accuracy, varying from binary to scalar interpretations, often tied to grader expertise without reference to clinical guidelines. We address strategies and challenges to increase accuracy. In particular, LLMs can be infused with domain knowledge using Retrieval Augmented Generation (RAG) or Supervised Fine‐Tuning (SFT) with reinforcement learning from human feedback (RLHF). RAG faces challenges with in‐context window limits and accurate information retrieval from the provided context. SFT, a deeper adaptation method, is computationally demanding and requires specialized knowledge. LLMs may increase patient quality of care across the field of digestive diseases, where physicians are often engaged in screening, treatment and surveillance for a broad range of pathologies for which in‐context learning or SFT with RLHF could improve clinical decision‐making and patient outcomes. However, despite their potential, the safe deployment of LLMs in healthcare still needs to overcome hurdles in accuracy, suggesting a need for strategies that integrate human feedback with advanced model training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一行数字发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
城东城西发布了新的文献求助10
4秒前
z_king_d_23完成签到,获得积分10
5秒前
orixero应助多喝冰水采纳,获得10
5秒前
5秒前
科研通AI2S应助感性的芹菜采纳,获得10
5秒前
ddd完成签到 ,获得积分10
6秒前
ED应助芒果布丁采纳,获得10
7秒前
paper发布了新的文献求助10
7秒前
向晚发布了新的文献求助10
10秒前
ding应助QQQ采纳,获得10
10秒前
西门凡双完成签到,获得积分10
10秒前
上官若男应助李木槿采纳,获得10
10秒前
10秒前
Lighten完成签到 ,获得积分10
11秒前
研友_楼灵煌完成签到,获得积分10
11秒前
zhouyu完成签到 ,获得积分10
12秒前
12秒前
wangying完成签到,获得积分10
14秒前
1134完成签到,获得积分20
17秒前
江十三发布了新的文献求助10
17秒前
20秒前
21秒前
聪明芹完成签到,获得积分10
22秒前
22秒前
徐徐完成签到,获得积分10
22秒前
24秒前
dara997发布了新的文献求助10
26秒前
马宇飞发布了新的文献求助10
28秒前
孙燕应助1688采纳,获得10
29秒前
30秒前
梁其杰完成签到,获得积分10
30秒前
wing00024完成签到,获得积分10
30秒前
gw发布了新的文献求助10
30秒前
31秒前
乎乎完成签到,获得积分10
31秒前
34秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
A First Course in Bayesian Statistical Methods 400
American Historical Review - Volume 130, Issue 2, June 2025 (Full Issue) 400
Canon of Insolation and the Ice-age Problem 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3911494
求助须知:如何正确求助?哪些是违规求助? 3457116
关于积分的说明 10893242
捐赠科研通 3183455
什么是DOI,文献DOI怎么找? 1759663
邀请新用户注册赠送积分活动 851048
科研通“疑难数据库(出版商)”最低求助积分说明 792432