炎症
巨噬细胞
巨噬细胞极化
免疫系统
免疫学
表型
医学
泡沫电池
分泌物
促炎细胞因子
重编程
癌症研究
生物
细胞
内科学
体外
遗传学
基因
生物化学
作者
Bo Yang,Sanhua Hang,Siting Xu,Yun Gao,Wenhua Yu,Guangyao Zang,Lili Zhang,Zhongqun Wang
出处
期刊:Heliyon
[Elsevier BV]
日期:2024-05-29
卷期号:10 (11): e32073-e32073
被引量:11
标识
DOI:10.1016/j.heliyon.2024.e32073
摘要
Atherosclerosis is a chronic inflammatory disease characterised by plaque accumulation in the arteries. Macrophages are immune cells that are crucial in the development of atherosclerosis. Macrophages can adopt different phenotypes, with the M1 phenotype promoting inflammation while the M2 phenotype counteracting it. This review focuses on the factors that drive the polarisation of M1 macrophages towards a pro-inflammatory phenotype during AS. Additionally, we explored metabolic reprogramming mechanisms and cytokines secretion by M1 macrophages. Hyperlipidaemia is widely recognised as a major risk factor for atherosclerosis. Modified lipoproteins released in the presence of hyperlipidaemia can trigger the release of cytokines and recruit circulating monocytes, which adhere to the damaged endothelium and differentiate into macrophages. Macrophages engulf lipids, leading to the formation of foam cells. As atherosclerosis progresses, foam cells become the necrotic core within the atherosclerotic plaques, destabilising them and triggering ischaemic disease. Furthermore, we discuss recent research focusing on targeting macrophages or inflammatory pathways for preventive or therapeutic purposes. These include statins, PCSK9 inhibitors, and promising nanotargeted drugs. These new developments hold the potential for the prevention and treatment of atherosclerosis and its related complications.
科研通智能强力驱动
Strongly Powered by AbleSci AI