GENNDTI: Drug-target interaction prediction using graph neural network enhanced by router nodes

计算机科学 路由器 人工神经网络 人工智能 图形 计算机网络 机器学习 理论计算机科学
作者
Beiyuan Yang,Yule Liu,Junfeng Wu,Fang Bai,Mingyue Zheng,Jie Zheng
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (12): 7588-7598
标识
DOI:10.1109/jbhi.2024.3402529
摘要

Identifying drug-target interactions (DTI) is crucial in drug discovery and repurposing, and in silico techniques for DTI predictions are becoming increasingly important for reducing time and cost. Most interaction-based DTI models rely on the guilt-by-association principle that "similar drugs can interact with similar targets". However, such methods utilize precomputed similarity matrices and cannot dynamically discover intricate correlations. Meanwhile, some methods enrich DTI networks by incorporating additional networks like DDI and PPI networks, enriching biological signals to enhance DTI prediction. While these approaches have achieved promising performance in DTI prediction, such coarse-grained association data do not explain the specific biological mechanisms underlying DTIs. In this work, we propose GENNDTI, which constructs biologically meaningful routers to represent and integrate the salient properties of drugs and targets. Similar drugs or targets connect to more same router nodes, capturing property sharing. In addition, heterogeneous encoders are designed to distinguish different types of interactions, modeling both real and constructed interactions. This strategy enriches graph topology and enhances prediction efficiency as well. We evaluate the proposed method on benchmark datasets, demonstrating comparative performance over existing methods. We specifically analyze router nodes to validate their efficacy in improving predictions and providing biological explanations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
积极尔容完成签到,获得积分20
刚刚
刚刚
立冏商发布了新的文献求助10
刚刚
汉堡包应助飞稿采纳,获得10
2秒前
2秒前
香蕉初瑶发布了新的文献求助10
2秒前
于凡完成签到,获得积分10
2秒前
Meidina发布了新的文献求助10
3秒前
SNP1988应助mumu采纳,获得10
3秒前
peng完成签到,获得积分20
4秒前
5秒前
6秒前
6秒前
6秒前
houxufeng完成签到 ,获得积分10
6秒前
Akim应助达不溜的话语权采纳,获得10
7秒前
秋山红雨发布了新的文献求助10
7秒前
开放如天完成签到 ,获得积分10
8秒前
8秒前
LELE完成签到 ,获得积分10
9秒前
猪猪猪发布了新的文献求助10
9秒前
10秒前
充电宝应助zanzan采纳,获得10
10秒前
krislan完成签到,获得积分10
10秒前
顾矜应助郑林采纳,获得10
10秒前
lucky发布了新的文献求助10
10秒前
又夏完成签到,获得积分10
11秒前
小二郎应助bo采纳,获得10
13秒前
天真思雁发布了新的文献求助10
14秒前
Xccccc完成签到 ,获得积分10
14秒前
cc关注了科研通微信公众号
14秒前
万能图书馆应助假面绅士采纳,获得30
14秒前
上官若男应助小wan9同学采纳,获得10
15秒前
欣慰的凡儿完成签到,获得积分10
16秒前
Sally完成签到,获得积分20
16秒前
无情胡萝卜完成签到,获得积分10
16秒前
不安保温杯完成签到 ,获得积分10
17秒前
负责的甜瓜完成签到,获得积分10
17秒前
桐桐应助白小超人采纳,获得10
17秒前
沉默士萧发布了新的文献求助30
17秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816810
求助须知:如何正确求助?哪些是违规求助? 3360247
关于积分的说明 10407179
捐赠科研通 3078205
什么是DOI,文献DOI怎么找? 1690660
邀请新用户注册赠送积分活动 813983
科研通“疑难数据库(出版商)”最低求助积分说明 767924