A GPT-4 Reticular Chemist for Guiding MOF Discovery

化学家 工作流程 网状结缔组织 计算机科学 背景(考古学) 过程(计算) 迭代和增量开发 人工智能 化学 软件工程 程序设计语言 生物 古生物学 有机化学 数据库 解剖
作者
Zhiling Zheng,Zichao Rong,Nakul Rampal,Christian Borgs,Jennifer Chayes,Omar M. Yaghi
出处
期刊:Cornell University - arXiv 被引量:2
标识
DOI:10.48550/arxiv.2306.14915
摘要

We present a new framework integrating the AI model GPT-4 into the iterative process of reticular chemistry experimentation, leveraging a cooperative workflow of interaction between AI and a human researcher. This GPT-4 Reticular Chemist is an integrated system composed of three phases. Each of these utilizes GPT-4 in various capacities, wherein GPT-4 provides detailed instructions for chemical experimentation and the human provides feedback on the experimental outcomes, including both success and failures, for the in-context learning of AI in the next iteration. This iterative human-AI interaction enabled GPT-4 to learn from the outcomes, much like an experienced chemist, by a prompt-learning strategy. Importantly, the system is based on natural language for both development and operation, eliminating the need for coding skills, and thus, make it accessible to all chemists. Our collaboration with GPT-4 Reticular Chemist guided the discovery of an isoreticular series of MOFs, with each synthesis fine-tuned through iterative feedback and expert suggestions. This workflow presents a potential for broader applications in scientific research by harnessing the capability of large language models like GPT-4 to enhance the feasibility and efficiency of research activities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ChenGY完成签到,获得积分20
1秒前
1秒前
1秒前
1秒前
1秒前
liang2508发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
包破茧完成签到,获得积分10
2秒前
柒柒捌捌完成签到,获得积分10
3秒前
3秒前
3秒前
Gxmmmm_应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
浮游应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
大模型应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
liang2508发布了新的文献求助10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4924906
求助须知:如何正确求助?哪些是违规求助? 4195065
关于积分的说明 13030178
捐赠科研通 3966775
什么是DOI,文献DOI怎么找? 2174275
邀请新用户注册赠送积分活动 1191665
关于科研通互助平台的介绍 1101154