Robust interpolation of EEG/MEG sensor time-series via electromagnetic source imaging

脑磁图 计算机科学 脑电图 插值(计算机图形学) 人工智能 样条插值 模式识别(心理学) 图像分辨率 计算机视觉 算法 运动(物理) 心理学 精神科 双线性插值
作者
Chang Cai,Xinbao Qi,Yuanshun Long,Zheyuan Zhang,Jing Yan,Huicong Kang,Wei Wu,Srikantan S. Nagarajan
出处
期刊:Journal of Neural Engineering [IOP Publishing]
标识
DOI:10.1088/1741-2552/ada309
摘要

Abstract Objective: Electroencephalography (EEG) and Magnetoencephalography (MEG) are widely used non-invasive techniques in clinical and cognitive neuroscience. However, low spatial resolution measurements, partial brain coverage by some sensor arrays, as well as noisy sensors could result in distorted sensor topographies resulting in inaccurate reconstructions of underlying brain dynamics. Solving these problems has been a challenging task, This paper proposes a robust framework based on electromagnetic source imaging for interpolation of unknown or poor quality EEG/MEG measurements. Approach: This framework consists of two steps: 1) estimating brain source activity using a robust inverse algorithm along with the leadfield matrix of available good sensors, and 2) interpolating unknown or poor quality EEG/MEG measurements using the reconstructed brain sources using the leadfield matrices of unknown or poor quality sensors. We evaluate the proposed framework through simulations and several real datasets, comparing its performance to two popular benchmarks - neighborhood interpolation (NI) and spherical spline interpolation (SSI) algorithms. Results: In both simulations and real EEG/MEG measurements, we demonstrate several advantages compared to benchmarks, which are robust to highly correlated brain activity, low signal-to-noise ratio data and accurately estimates cortical dynamics. Significance: These results demonstrate a rigorous platform to enhance the spatial resolution of EEG and MEG, to overcome limitations of partial coverage of EEG/MEG sensor arrays that is particularly relevant to low-channel count optically pumped magnetometer (OPM) arrays, and to estimate activity in poor/noisy sensors to a certain extent based on the available measurements from other good sensors. Implementation of this framework will enhance the quality of EEG and MEG, thereby expanding the potential applications of these modalities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助等等采纳,获得10
刚刚
含糊的路人完成签到,获得积分10
1秒前
2秒前
科研通AI2S应助Nichol采纳,获得10
2秒前
via完成签到,获得积分10
4秒前
耶耶耶完成签到,获得积分10
4秒前
云雾完成签到 ,获得积分10
5秒前
5秒前
Grace完成签到 ,获得积分10
5秒前
科研通AI2S应助周杰采纳,获得10
5秒前
6秒前
6秒前
7秒前
含糊的画板完成签到,获得积分10
7秒前
嘿HEI应助刻苦莫言采纳,获得10
7秒前
芒果不忙完成签到,获得积分10
9秒前
ding应助QIHBY采纳,获得10
10秒前
东方完成签到 ,获得积分10
10秒前
婷123完成签到 ,获得积分10
10秒前
10秒前
10秒前
Kalaki发布了新的文献求助10
10秒前
精明松思发布了新的文献求助10
11秒前
小邸应助wang5945采纳,获得10
11秒前
11秒前
三人行发布了新的文献求助10
12秒前
zwjy完成签到,获得积分10
12秒前
MlzqdE发布了新的文献求助10
12秒前
六个大洋完成签到 ,获得积分10
14秒前
金木水发布了新的文献求助10
14秒前
kevin发布了新的文献求助10
15秒前
15秒前
机智的茈完成签到 ,获得积分10
15秒前
王金龙发布了新的文献求助10
16秒前
ding应助精明松思采纳,获得10
17秒前
旺仔同学发布了新的文献求助10
17秒前
辻渃发布了新的文献求助10
18秒前
lmn完成签到,获得积分10
21秒前
Kalaki完成签到,获得积分20
22秒前
涛涛完成签到,获得积分20
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4549890
求助须知:如何正确求助?哪些是违规求助? 3980168
关于积分的说明 12322675
捐赠科研通 3649157
什么是DOI,文献DOI怎么找? 2009743
邀请新用户注册赠送积分活动 1045102
科研通“疑难数据库(出版商)”最低求助积分说明 933611