Improved and Interpretable Prediction of Cytochrome P450-Mediated Metabolism by Molecule-Level Graph Modeling and Subgraph Information Bottlenecks

细胞色素P450 图形 计算生物学 细胞色素 计算机科学 化学 生物化学 生物 人工智能 新陈代谢 理论计算机科学
作者
Yi Li,Qinwei Xu,Gao Jian,Xiaoling Zhang,Hua Wang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01632
摘要

Accurately identifying sites of metabolism (SoM) mediated by cytochrome P450 (CYP) enzymes, which are responsible for drug metabolism in the body, is critical in the early stage of drug discovery and development. Current computational methods for CYP-mediated SoM prediction face several challenges, including limitations to traditional machine learning models at the atomic level, heavy reliance on complex feature engineering, and the lack of interpretability relevant to medicinal chemistry. Here, we propose GraphCySoM, a novel molecule-level modeling approach based on graph neural networks, utilizing lightweight features and interpretable annotations on substructures, to effectively and interpretably predict CYP-mediated SoM. Unlike computationally expensive atomic descriptors derived from resource-intensive chemistry or even quantum chemistry calculations, we emphasize that graph-based molecular modeling initialized solely with lightweight features enables the adaptive learning of molecular topology through message-passing mechanisms combined with various aggregation kernels. Extensive ablation experiments demonstrate that GraphCySoM significantly outperforms baseline models and achieves superior performance compared with competing methods while exhibiting advantages in computational efficiency. Moreover, the attention mechanism and subgraph information bottlenecks are incorporated to analyze node importance and feature significance, resulting in mining substructures associated with the SoM. To the best of our knowledge, this is the first comprehensive study of CYP-mediated SoM using molecule-level modeling and interpretable technology. Our method achieves new state-of-the-art performance and provides potential insights into the molecular and pharmacological mechanisms underlying drug metabolism catalyzed by CYP enzymes. All source files and trained models are freely available at https://github.com/liyigerry/GraphCySoM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
多喝水完成签到,获得积分10
刚刚
1秒前
祖冰绿发布了新的文献求助10
1秒前
下雨天完成签到 ,获得积分10
1秒前
疯狂的小肥哥完成签到,获得积分10
1秒前
1秒前
领导范儿应助知性的幼晴采纳,获得10
1秒前
CY完成签到,获得积分10
1秒前
过客完成签到,获得积分10
1秒前
keyanling发布了新的文献求助10
2秒前
yulia完成签到 ,获得积分10
2秒前
2秒前
Chillym发布了新的文献求助10
2秒前
小林完成签到,获得积分10
3秒前
溏心发布了新的文献求助20
3秒前
4秒前
陈陈完成签到,获得积分10
4秒前
断了的弦完成签到,获得积分10
4秒前
Lu完成签到,获得积分10
4秒前
orixero应助Nicole采纳,获得10
4秒前
顺利紫山完成签到,获得积分10
4秒前
tsuki发布了新的文献求助30
5秒前
zhonglv7应助小巧香旋采纳,获得10
5秒前
5秒前
vera完成签到,获得积分10
5秒前
yyy0202完成签到,获得积分20
6秒前
whoami完成签到,获得积分10
6秒前
凝望那片海2020完成签到,获得积分10
6秒前
Max发布了新的文献求助10
7秒前
8秒前
jlk完成签到,获得积分10
8秒前
fanlin完成签到,获得积分0
8秒前
烟花应助冷酷的雪糕采纳,获得10
8秒前
祖冰绿完成签到,获得积分10
8秒前
无花果应助whoami采纳,获得10
9秒前
Freya完成签到,获得积分10
9秒前
Chillym完成签到 ,获得积分10
10秒前
eye完成签到,获得积分10
10秒前
11秒前
David完成签到 ,获得积分10
11秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
Византийско-аланские отно- шения (VI–XII вв.) 500
Improvement of Fingering-Induced Pattern Collapse by Adjusting Chemical Mixing Procedure 500
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4179034
求助须知:如何正确求助?哪些是违规求助? 3714405
关于积分的说明 11710118
捐赠科研通 3395446
什么是DOI,文献DOI怎么找? 1862845
邀请新用户注册赠送积分活动 921488
科研通“疑难数据库(出版商)”最低求助积分说明 833299