Camera-based Infant Suffocation Risk Detection via Text-to-Image Generation for Guarding Sleep Safety

计算机科学 人工智能 睡眠(系统调用) 计算机视觉 计算机安全 医疗急救 医学 操作系统
作者
Wenjin Wang,Chuchu Liao,Jing-Yun Mai,Xiaoxiao He,Liping Pan,Ming Xia,Huiyi Lai,Xuhui Yang,Zhenlang Lin,Wenjin Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/jbhi.2025.3542594
摘要

Current camera-based infant monitoring mainly focuses on physiological measurement, overlooking its important semantic analysis potential for detecting accidental suffocation caused by oronasal occlusion during sleep. However, developing a robust infant suffocation risk detection model typically requires substantial labeled data, which is very difficult to obtain in real-world scenarios. To address this, we utilized the text-to-image diffusion model to generate diverse infant images depicting oronasal occlusion and non-occlusion scenarios controlled by text prompts. To ease the process of labeling, self- and semi-supervised learning algorithms are leveraged to learn the semantic information from unlabeled data with the support of minimal labeled data to train different model architectures. To evaluate the feasibility of this solution, we conducted a clinical trial in the neonatology department, which collected video data from 22 infants under various oronasal occlusion scenarios using breathable covers (e.g. clinical tissue). The clinical evaluation shows that most models trained on 25,000 generated images achieved over 90% performance on metrics of accuracy, recall, and F1-score, outperforming conventional approaches that pre-train and fine-tune the model using over 90,000 labeled task-related online images. This demonstrates the feasibility of leveraging text-to-image generated data to achieve robust camera-based infant suffocation risk detection, so as to secure the sleep safety of infants. More importantly, it beacons the potential of using text-based large-scale model to solve the general issue of scarcity of human data in artificial intelligence-based healthcare or clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
You完成签到,获得积分10
刚刚
1秒前
南唧酱完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
惠民发布了新的文献求助10
3秒前
科研澄澄完成签到,获得积分10
4秒前
XS_QI发布了新的文献求助10
5秒前
木木木发布了新的文献求助10
5秒前
6秒前
陶醉的凌瑶完成签到,获得积分10
7秒前
传奇3应助樱桃超级大丸子采纳,获得10
9秒前
随风完成签到,获得积分0
10秒前
12秒前
zzq发布了新的文献求助10
12秒前
canoe完成签到 ,获得积分10
13秒前
韩文强完成签到,获得积分20
13秒前
小欣超人完成签到 ,获得积分10
14秒前
14秒前
15秒前
冰沁沁心完成签到,获得积分10
16秒前
羊冰安发布了新的文献求助10
18秒前
yuyu完成签到,获得积分10
18秒前
YYJ25发布了新的文献求助10
20秒前
王哥发布了新的文献求助10
20秒前
20秒前
Orange应助冷了个冷采纳,获得10
22秒前
鳗鱼冰薇完成签到 ,获得积分10
22秒前
谢小盟应助胡一刀采纳,获得10
23秒前
阳光凡儿完成签到,获得积分10
24秒前
善良的灵羊完成签到 ,获得积分10
27秒前
知行完成签到,获得积分10
27秒前
zm完成签到,获得积分10
27秒前
28秒前
量子星尘发布了新的文献求助10
28秒前
28秒前
英姑应助越瑟淳潔采纳,获得10
30秒前
沫沫完成签到 ,获得积分10
31秒前
zy完成签到,获得积分20
31秒前
32秒前
lianyang发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Materials Selection in Mechanical Design 1000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4308464
求助须知:如何正确求助?哪些是违规求助? 3830231
关于积分的说明 11985380
捐赠科研通 3470721
什么是DOI,文献DOI怎么找? 1903169
邀请新用户注册赠送积分活动 950434
科研通“疑难数据库(出版商)”最低求助积分说明 852389