已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MBE-YOLOv8: Enhancing Building Crack Detection with an Advanced YOLOv8 Framework

计算机科学 材料科学 建筑工程 工程类
作者
Zhen Zhang,Z.-Y. Hu,Kexin Chen,Qi Zhou,Hongxia Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (2): 026005-026005
标识
DOI:10.1088/1361-6501/ad9e1c
摘要

Abstract Buildings, over prolonged periods, are susceptible to developing various types of cracks, which are often small and exhibit low contrast, leading to challenges in accurate detection. Missed detections and false positives due to these characteristics can result in delayed repairs, thereby compromising structural integrity and safety. Therefore, real-time detection of building cracks is essential to maintain the longevity and safety of infrastructures. In response to these challenges, we present an optimized version of the YOLOv8 model, referred to as MBE-YOLOv8, designed specifically for building crack detection. The core enhancement involves restructuring the backbone of YOLOv8 with the integration of the multi-dimensional collaborative attention mechanism, significantly improving feature interrelationships and the extraction capabilities of the backbone network. Additionally, we introduced a Weighted Feature Fusion Network (BiFPN) and developed a novel BiFPN-L structure to enhance feature fusion and detection accuracy, particularly for small targets. The efficient channel attention (ECA) mechanism was also incorporated into the model’s neck, leading to the design of a new EC2f structure that improves the model’s adaptability to scale variations and overall feature extraction efficiency. A comparative analysis with the original YOLOv8 model demonstrated that MBE-YOLOv8 achieved performance improvements with P, R , and mAP@0.5 values of 78.6%, 67.0%, and 73.4%, respectively. These figures represent increases of 4.8, 3.8, and 4.1 percentage points compared to the previous version of the YOLOv8 model. This advancement has significantly bolstered the capability to detect cracks in buildings. Furthermore, the enhanced model preserves a compact size of 3.0 M while sustaining a high frame rate (FPS), rendering it highly deployable for applications related to crack detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
hhhh发布了新的文献求助10
4秒前
4秒前
6秒前
北北北发布了新的文献求助10
7秒前
周老八发布了新的文献求助10
8秒前
Fgc完成签到,获得积分20
8秒前
Estrella完成签到 ,获得积分10
9秒前
Xiaque发布了新的文献求助10
9秒前
木语发布了新的文献求助10
9秒前
12秒前
13秒前
科研豪97完成签到,获得积分10
13秒前
大个应助魏伯安采纳,获得10
15秒前
15秒前
黄耀完成签到,获得积分10
17秒前
郭娅楠完成签到 ,获得积分10
18秒前
Boveri发布了新的文献求助10
18秒前
Dr完成签到,获得积分10
19秒前
gaga发布了新的文献求助10
19秒前
小蘑菇应助桑田采纳,获得10
19秒前
19秒前
舒心的凝莲应助fdb采纳,获得10
20秒前
21秒前
一二完成签到,获得积分10
21秒前
22秒前
cyh时代完成签到 ,获得积分10
22秒前
解成危完成签到,获得积分10
24秒前
rubyyoyo发布了新的文献求助10
25秒前
goodgoodstudy发布了新的文献求助10
26秒前
27秒前
31秒前
魏伯安发布了新的文献求助10
32秒前
Aoren完成签到,获得积分10
33秒前
科研通AI5应助hi采纳,获得10
33秒前
hnxxangel发布了新的文献求助10
34秒前
科研通AI5应助rubyyoyo采纳,获得10
34秒前
hey发布了新的文献求助20
34秒前
zyz924完成签到,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4483146
求助须知:如何正确求助?哪些是违规求助? 3939177
关于积分的说明 12219035
捐赠科研通 3594421
什么是DOI,文献DOI怎么找? 1976756
邀请新用户注册赠送积分活动 1013890
科研通“疑难数据库(出版商)”最低求助积分说明 906958