Ultra-sparse-view Cone-beam CT Reconstruction Based Strictly-structure-preserved Deep Neural Network in Image-guided Radiation Therapy

迭代重建 人工智能 锥束ct 图像(数学) 计算机科学 人工神经网络 计算机视觉 医学影像学 计算机断层摄影术 放射科 医学
作者
Ying Song,W. Zhang,Tianxiong Wu,Yong Luo,Jiangyuan Shi,Xinjian Yang,Zhonghua Deng,Qi Xu,Guangjun Li,Sen Bai,Jun Zhao,Renming Zhong
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2025.3541242
摘要

Radiation therapy is regarded as the mainstay treatment for cancer in clinic. Kilovoltage cone-beam CT (CBCT) images have been acquired for most treatment sites as the clinical routine for image-guided radiation therapy (IGRT). However, repeated CBCT scanning brings extra irradiation dose to the patients and decreases clinical efficiency. Sparse CBCT scanning is a possible solution to the problems mentioned above but at the cost of inferior image quality. To decrease the extra dose while maintaining the CBCT quality, deep learning (DL) methods are widely adopted. In this study, planning CT was used as prior information, and the corresponding strictly structure-preserved CBCT was simulated based on the attenuation information from the planning CT. We developed a hyper-resolution ultra-sparse-view CBCT reconstruction model, known as the planning CT-based strictly-structure-preserved neural network (PSSP-NET), using a generative adversarial network (GAN). This model utilized clinical CBCT projections with extremely low sampling rates for the rapid reconstruction of high-quality CBCT images, and its clinical performance was evaluated in head-and-neck cancer patients. Our experiments demonstrated enhanced performance and improved reconstruction speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
121212发布了新的文献求助10
刚刚
1秒前
山橘月完成签到,获得积分10
3秒前
3秒前
YeSun发布了新的文献求助10
4秒前
hehehehe发布了新的文献求助10
4秒前
coolkid应助lhh采纳,获得10
5秒前
6秒前
侃侃发布了新的文献求助10
8秒前
9秒前
Hello应助聪慧芷巧采纳,获得10
10秒前
10秒前
堇年完成签到,获得积分20
10秒前
zzzzzy完成签到,获得积分10
11秒前
msn00完成签到,获得积分10
15秒前
15秒前
hehehehe完成签到,获得积分10
17秒前
飘逸问薇发布了新的文献求助10
17秒前
吃猫的鱼发布了新的文献求助10
17秒前
Owen应助iwaljq采纳,获得10
19秒前
SciGPT应助cherish采纳,获得10
20秒前
善学以致用应助小轩子采纳,获得10
22秒前
23秒前
24秒前
Akim应助不喜采纳,获得10
26秒前
27秒前
英俊的铭应助吴哲甲采纳,获得10
28秒前
29秒前
Akim应助睡睡采纳,获得10
30秒前
31秒前
32秒前
34秒前
YeSun发布了新的文献求助10
36秒前
fliver发布了新的文献求助10
36秒前
竹焚完成签到 ,获得积分10
36秒前
张张的张完成签到,获得积分10
37秒前
37秒前
cherish发布了新的文献求助10
37秒前
丘比特应助不安的鸡翅采纳,获得10
38秒前
38秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Sellars and Davidson in Dialogue 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3942848
求助须知:如何正确求助?哪些是违规求助? 3487942
关于积分的说明 11046085
捐赠科研通 3218482
什么是DOI,文献DOI怎么找? 1778969
邀请新用户注册赠送积分活动 864496
科研通“疑难数据库(出版商)”最低求助积分说明 799542