ISFET
材料科学
场效应晶体管
稳健性(进化)
纳米线
硅
晶体管
支持向量机
软件可移植性
CMOS芯片
电子工程
计算机科学
纳米技术
人工智能
光电子学
电气工程
工程类
化学
电压
生物化学
基因
程序设计语言
作者
Nabil Ayadi,Ahmet Lale,Bekkay Hajji,Jérôme Launay,Pierre Temple‐Boyer
出处
期刊:Sensors
[Multidisciplinary Digital Publishing Institute]
日期:2024-12-18
卷期号:24 (24): 8091-8091
摘要
The development of ion-sensitive field-effect transistor (ISFET) sensors based on silicon nanowires (SiNW) has recently seen significant progress, due to their many advantages such as compact size, low cost, robustness and real-time portability. However, little work has been done to predict the performance of SiNW-ISFET sensors. The present study focuses on predicting the performance of the silicon nanowire (SiNW)-based ISFET sensor using four machine learning techniques, namely multilayer perceptron (MLP), nonlinear regression (NLR), support vector regression (SVR) and extra tree regression (ETR). The proposed ML algorithms are trained and validated using experimental measurements of the SiNW-ISFET sensor. The results obtained show a better predictive ability of extra tree regression (ETR) compared to other techniques, with a low RMSE of 1 × 10−3 mA and an R2 value of 0.9999725. This prediction study corrects the problems associated with SiNW -ISFET sensors.
科研通智能强力驱动
Strongly Powered by AbleSci AI