已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting rectal cancer prognosis from histopathological images and clinical information using multi-modal deep learning

医学 结直肠癌 病态的 深度学习 数字化病理学 人工智能 H&E染色 临床试验 癌症 数据集 放射科 病理 内科学 计算机科学 免疫组织化学
作者
Yixin Xu,Jiedong Guo,Na Yang,Can Zhu,Tianlei Zheng,Weiguo Zhao,Jia Liu,Jun Song
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:14
标识
DOI:10.3389/fonc.2024.1353446
摘要

Objective The objective of this study was to provide a multi-modal deep learning framework for forecasting the survival of rectal cancer patients by utilizing both digital pathological images data and non-imaging clinical data. Materials and methods The research included patients diagnosed with rectal cancer by pathological confirmation from January 2015 to December 2016. Patients were allocated to training and testing sets in a randomized manner, with a ratio of 4:1. The tissue microarrays (TMAs) and clinical indicators were obtained. Subsequently, we selected distinct deep learning models to individually forecast patient survival. We conducted a scanning procedure on the TMAs in order to transform them into digital pathology pictures. Additionally, we performed pre-processing on the clinical data of the patients. Subsequently, we selected distinct deep learning algorithms to conduct survival prediction analysis using patients’ pathological images and clinical data, respectively. Results A total of 292 patients with rectal cancer were randomly allocated into two groups: a training set consisting of 234 cases, and a testing set consisting of 58 instances. Initially, we make direct predictions about the survival status by using pre-processed Hematoxylin and Eosin (H&E) pathological images of rectal cancer. We utilized the ResNest model to extract data from histopathological images of patients, resulting in a survival status prediction with an AUC (Area Under the Curve) of 0.797. Furthermore, we employ a multi-head attention fusion (MHAF) model to combine image features and clinical features in order to accurately forecast the survival rate of rectal cancer patients. The findings of our experiment show that the multi-modal structure works better than directly predicting from histopathological images. It achieves an AUC of 0.837 in predicting overall survival (OS). Conclusions Our study highlights the potential of multi-modal deep learning models in predicting survival status from histopathological images and clinical information, thus offering valuable insights for clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hyp关注了科研通微信公众号
2秒前
苏子轩完成签到 ,获得积分10
3秒前
锐rui发布了新的文献求助10
5秒前
蛙蛙完成签到,获得积分10
5秒前
9秒前
沐风完成签到,获得积分20
11秒前
小吴发布了新的文献求助10
12秒前
甜心糖完成签到 ,获得积分10
13秒前
14秒前
隐形曼青应助小全采纳,获得10
14秒前
li完成签到 ,获得积分10
14秒前
锐rui完成签到,获得积分10
14秒前
沉静一刀完成签到 ,获得积分10
16秒前
科研通AI5应助Fancy采纳,获得10
16秒前
技术的不能发表完成签到 ,获得积分10
19秒前
Hyp发布了新的文献求助10
20秒前
笨笨完成签到,获得积分10
21秒前
22秒前
寰宇完成签到,获得积分10
22秒前
糊涂的大碗完成签到 ,获得积分10
27秒前
Omni发布了新的文献求助10
27秒前
29秒前
酒醉的蝴蝶完成签到 ,获得积分10
30秒前
31秒前
开胃咖喱完成签到,获得积分10
32秒前
zmnzmnzmn应助小吴采纳,获得10
33秒前
小全发布了新的文献求助10
34秒前
ComeOn发布了新的文献求助10
34秒前
bwbpuh3完成签到,获得积分10
40秒前
英俊的铭应助dan1029采纳,获得10
41秒前
消逝完成签到 ,获得积分10
42秒前
43秒前
43秒前
小吴完成签到,获得积分10
46秒前
47秒前
48秒前
大舟Austin完成签到 ,获得积分10
48秒前
48秒前
壮观的谷冬完成签到 ,获得积分10
49秒前
Fancy完成签到,获得积分10
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777563
求助须知:如何正确求助?哪些是违规求助? 3322938
关于积分的说明 10212470
捐赠科研通 3038270
什么是DOI,文献DOI怎么找? 1667247
邀请新用户注册赠送积分活动 798073
科研通“疑难数据库(出版商)”最低求助积分说明 758201