PG2Net: Personalized and Group Preferences Guided Network for Next Place Prediction

群(周期表) 计算机科学 化学 有机化学
作者
Bin Wang,Huifeng Li,Weipeng Wang,Menghan Wang,Yaohui Jin,Yanyan Xu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (8): 8655-8670 被引量:2
标识
DOI:10.1109/tits.2024.3355292
摘要

Predicting the next destination is a key in human mobility behavior modeling, which is significant in various fields, such as epidemic control, urban planning, traffic management and recommendation. To achieve this, one typical solution is designing modules based on RNN to capture their preferences to various locations. Although these RNN-based methods can effectively learn individual's hidden personalized preferences to her visited places, the interactions among users can only be weakly learned through the representations of locations. Targeting this, we propose an end-to-end framework named personalized and group preference guided network (PG 2 Net), considering the users' preferences to various places at both individual and collective levels. Specifically, PG 2 Net concatenates Bi-LSTM and attention mechanism to capture each user's long-term mobility tendency. To learn population's group preferences, we utilize spatial and temporal information of the visitations to construct a spatial-temporal dependency module. We adopt a graph embedding method to map users' trajectory into a hidden space, capturing their sequential relation. In addition, we devise an auxiliary loss to learn the vectorial representation of her next location. Experimental results on two Foursquare check-in datasets and one mobile phone dataset indicate the advantages of our model compared to the state-of-the-art baselines. Source code is available at https://github.com/urbanmobility/PG2Net.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Lily发布了新的文献求助10
1秒前
2秒前
左眼天堂完成签到,获得积分10
2秒前
薛蹇完成签到 ,获得积分10
3秒前
wztin发布了新的文献求助10
4秒前
香蕉觅云应助zhao采纳,获得10
5秒前
小石头发布了新的文献求助10
6秒前
Orange应助大气怜烟采纳,获得10
7秒前
清沧炽魂发布了新的文献求助10
7秒前
canvas完成签到,获得积分10
7秒前
JIU完成签到,获得积分10
8秒前
隐形曼青应助wanci采纳,获得10
9秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
李健的小迷弟应助小小王采纳,获得10
13秒前
小皮皮完成签到,获得积分10
14秒前
orixero应助阿冲采纳,获得10
14秒前
优秀剑愁完成签到 ,获得积分10
15秒前
Smithjiang完成签到,获得积分10
15秒前
黑猫小苍完成签到,获得积分10
16秒前
zjtttt发布了新的文献求助10
16秒前
18秒前
一剑温柔完成签到 ,获得积分10
18秒前
19秒前
大气怜烟完成签到,获得积分10
20秒前
成为一只会科研的猫完成签到 ,获得积分10
20秒前
21秒前
优秀完成签到,获得积分10
21秒前
诚心晓露发布了新的文献求助30
21秒前
任性的鼠标完成签到,获得积分10
21秒前
多多完成签到,获得积分10
22秒前
Zx_1993应助小石头采纳,获得10
22秒前
23秒前
zhuo完成签到,获得积分10
23秒前
含蓄可冥完成签到,获得积分10
24秒前
CC发布了新的文献求助10
24秒前
24秒前
所所应助朴实的访烟采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525055
求助须知:如何正确求助?哪些是违规求助? 4615431
关于积分的说明 14548146
捐赠科研通 4553473
什么是DOI,文献DOI怎么找? 2495321
邀请新用户注册赠送积分活动 1475890
关于科研通互助平台的介绍 1447635