Prediction of protein N-terminal acetylation modification sites based on CNN-BiLSTM-attention model

乙酰化 联营 计算机科学 水准点(测量) 卷积神经网络 机器学习 文字2vec 深度学习 支持向量机 人工智能 生物化学 生物 大地测量学 嵌入 基因 地理
作者
Jinsong Ke,Jianmei Zhao,Hongfei Li,Lei Yuan,Guanghui Dong,Guohua Wang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:174: 108330-108330 被引量:2
标识
DOI:10.1016/j.compbiomed.2024.108330
摘要

N-terminal acetylation is one of the most common and important post-translational modifications (PTM) of eukaryotic proteins. PTM plays a crucial role in various cellular processes and disease pathogenesis. Thus, the accurate identification of N-terminal acetylation modifications is important to gain insight into cellular processes and other possible functional mechanisms. Although some algorithmic models have been proposed, most have been developed based on traditional machine learning algorithms and small training datasets. Their practical applications are limited. Nevertheless, deep learning algorithmic models are better at handling high-throughput and complex data. In this study, DeepCBA, a model based on the hybrid framework of convolutional neural network (CNN), bidirectional long short-term memory network (BiLSTM), and attention mechanism deep learning, was constructed to detect the N-terminal acetylation sites. The DeepCBA was built as follows: First, a benchmark dataset was generated by selecting low-redundant protein sequences from the Uniport database and further reducing the redundancy of the protein sequences using the CD-HIT tool. Subsequently, based on the skip-gram model in the word2vec algorithm, tripeptide word vector features were generated on the benchmark dataset. Finally, the CNN, BiLSTM, and attention mechanism were combined, and the tripeptide word vector features were fed into the stacked model for multiple rounds of training. The model performed excellently on independent dataset test, with accuracy and area under the curve of 80.51% and 87.36%, respectively. Altogether, DeepCBA achieved superior performance compared with the baseline model, and significantly outperformed most existing predictors. Additionally, our model can be used to identify disease loci and drug targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
刚刚
DijiaXu应助科研通管家采纳,获得10
刚刚
烟花应助科研通管家采纳,获得10
刚刚
完美世界应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
punta完成签到,获得积分10
刚刚
cd完成签到 ,获得积分10
1秒前
mlzmlz完成签到,获得积分0
1秒前
万能图书馆应助不一样采纳,获得10
4秒前
大宝慧发布了新的文献求助10
4秒前
Coolkid2001完成签到,获得积分10
4秒前
腼腆的冰安完成签到 ,获得积分10
5秒前
7秒前
成就若颜完成签到,获得积分10
7秒前
xxywmt发布了新的文献求助20
7秒前
科研通AI5应助刁刁采纳,获得10
9秒前
打打应助Spaz采纳,获得10
9秒前
9秒前
褚沧海完成签到 ,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
renyi关注了科研通微信公众号
12秒前
12秒前
科研通AI6应助Ameliaykh采纳,获得10
14秒前
木木木发布了新的文献求助10
15秒前
Jeri完成签到 ,获得积分10
15秒前
kylin完成签到,获得积分10
16秒前
17秒前
17秒前
19秒前
123完成签到 ,获得积分10
19秒前
21秒前
21秒前
hahhha发布了新的文献求助10
21秒前
Ander完成签到 ,获得积分10
24秒前
飘逸楷瑞发布了新的文献求助20
26秒前
27秒前
三方完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4699399
求助须知:如何正确求助?哪些是违规求助? 4068178
关于积分的说明 12577605
捐赠科研通 3767840
什么是DOI,文献DOI怎么找? 2080931
邀请新用户注册赠送积分活动 1108811
科研通“疑难数据库(出版商)”最低求助积分说明 987057