Advanced computational approaches to understand protein aggregation

计算机科学 元动力学 计算生物学 蛋白质聚集 分子动力学 计算模型 数据科学 人工智能 生物 化学 计算化学 生物化学
作者
Deepshikha Ghosh,Anushka Biswas,Mithun Radhakrishna
出处
期刊:Biophysics reviews [American Institute of Physics]
卷期号:5 (2) 被引量:4
标识
DOI:10.1063/5.0180691
摘要

Protein aggregation is a widespread phenomenon implicated in debilitating diseases like Alzheimer's, Parkinson's, and cataracts, presenting complex hurdles for the field of molecular biology. In this review, we explore the evolving realm of computational methods and bioinformatics tools that have revolutionized our comprehension of protein aggregation. Beginning with a discussion of the multifaceted challenges associated with understanding this process and emphasizing the critical need for precise predictive tools, we highlight how computational techniques have become indispensable for understanding protein aggregation. We focus on molecular simulations, notably molecular dynamics (MD) simulations, spanning from atomistic to coarse-grained levels, which have emerged as pivotal tools in unraveling the complex dynamics governing protein aggregation in diseases such as cataracts, Alzheimer's, and Parkinson's. MD simulations provide microscopic insights into protein interactions and the subtleties of aggregation pathways, with advanced techniques like replica exchange molecular dynamics, Metadynamics (MetaD), and umbrella sampling enhancing our understanding by probing intricate energy landscapes and transition states. We delve into specific applications of MD simulations, elucidating the chaperone mechanism underlying cataract formation using Markov state modeling and the intricate pathways and interactions driving the toxic aggregate formation in Alzheimer's and Parkinson's disease. Transitioning we highlight how computational techniques, including bioinformatics, sequence analysis, structural data, machine learning algorithms, and artificial intelligence have become indispensable for predicting protein aggregation propensity and locating aggregation-prone regions within protein sequences. Throughout our exploration, we underscore the symbiotic relationship between computational approaches and empirical data, which has paved the way for potential therapeutic strategies against protein aggregation-related diseases. In conclusion, this review offers a comprehensive overview of advanced computational methodologies and bioinformatics tools that have catalyzed breakthroughs in unraveling the molecular basis of protein aggregation, with significant implications for clinical interventions, standing at the intersection of computational biology and experimental research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
10秒前
科研通AI2S应助苏木采纳,获得10
11秒前
mudiboyang完成签到,获得积分10
12秒前
白天亮完成签到,获得积分10
13秒前
14秒前
Lighten完成签到 ,获得积分10
19秒前
21秒前
苏木发布了新的文献求助10
27秒前
橘子海完成签到 ,获得积分10
28秒前
苏木完成签到 ,获得积分10
33秒前
科研通AI5应助科研通管家采纳,获得10
33秒前
cdercder应助科研通管家采纳,获得10
33秒前
cdercder应助科研通管家采纳,获得10
33秒前
cdercder应助科研通管家采纳,获得10
33秒前
赘婿应助科研通管家采纳,获得10
33秒前
伶俐碧萱完成签到 ,获得积分10
36秒前
叭叭完成签到,获得积分10
37秒前
yy完成签到 ,获得积分10
38秒前
俺也一样完成签到,获得积分10
39秒前
42秒前
ommphey完成签到 ,获得积分10
45秒前
王多肉完成签到,获得积分10
1分钟前
1分钟前
英姑应助苏木采纳,获得10
1分钟前
一禅完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
喵了个咪完成签到 ,获得积分10
1分钟前
guoxingliu完成签到,获得积分10
1分钟前
aero完成签到 ,获得积分10
1分钟前
fabea完成签到,获得积分10
1分钟前
DLL完成签到 ,获得积分10
1分钟前
栗子完成签到 ,获得积分10
1分钟前
劳动法的球球完成签到 ,获得积分20
1分钟前
MQ完成签到 ,获得积分10
1分钟前
紫陌完成签到,获得积分10
1分钟前
拼搏吐司完成签到 ,获得积分10
1分钟前
wtzhang16完成签到 ,获得积分10
1分钟前
哥哥完成签到,获得积分10
1分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833895
求助须知:如何正确求助?哪些是违规求助? 3376330
关于积分的说明 10492632
捐赠科研通 3095861
什么是DOI,文献DOI怎么找? 1704730
邀请新用户注册赠送积分活动 820104
科研通“疑难数据库(出版商)”最低求助积分说明 771859