Interactive learning for multi-finger dexterous hand: A model-free hierarchical deep reinforcement learning approach

强化学习 计算机科学 钢筋 人工智能 人机交互 心理学 社会心理学
作者
Baojiang Li,Shengjie Qiu,Jibo Bai,Bin Wang,Zhekai Zhang,Liang Li,Haiyan Wang,Xichao Wang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:295: 111847-111847 被引量:2
标识
DOI:10.1016/j.knosys.2024.111847
摘要

When a multi-fingered dexterous hand interacts with the external environment, it encounters various challenges, including the utilization of complex control techniques and the intricate coordination of finger motion sequences. Previous studies have primarily concentrated on investigating the interaction between multi-fingered dexterous hands and external objects, usually using model-based control or model-free reinforcement learning techniques. However, during practical implementation, various constraining factors are encountered, such as intricate modeling and limited interaction capabilities. In practical scenarios, the utilization of multi-fingered dexterous hands is imperative for the swift and efficient execution of a wide range of interactive tasks, including but not limited to throwing a ball and playing rock-paper-scissors. These tasks require skilled manual dexterity to demonstrate both precise control and quick responsiveness. To tackle this issue, we propose a hierarchical control approach for multi-fingered dexterous hands with interactive functionalities, utilizing model-free deep reinforcement learning. The complex interaction task is decomposed into simple sub-tasks using hierarchical strategy and action primitive decomposition, which effectively reduces the complexity of the action space, and achieves the motion planning and end finger trajectory control of dexterous hand. In a simulated environment, the aforementioned method has successfully executed interactive tasks, including ball throwing and playing rock-paper-scissors. It achieved a maximum normalized reward of 0.83 and an 84% success rate. These results are noteworthy in terms of both control accuracy and response speed. This study offers novel insights into the effective resolution of the intricate challenges associated with interactions involving multi-fingered dexterous hands and human-computer interaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
立夏完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助50
2秒前
3秒前
眯眯眼的龙猫完成签到,获得积分10
3秒前
KerwinLLL发布了新的文献求助10
3秒前
云儿完成签到,获得积分20
3秒前
倪秋完成签到,获得积分10
3秒前
思源应助zaphkiel采纳,获得10
5秒前
lvbowen发布了新的文献求助10
5秒前
Maxine完成签到 ,获得积分10
5秒前
7秒前
7喜发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助50
9秒前
lvbowen完成签到,获得积分10
10秒前
杏林春暖完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
16秒前
FashionBoy应助lango采纳,获得10
18秒前
糯米饭发布了新的文献求助200
19秒前
7rey完成签到,获得积分10
19秒前
20秒前
20秒前
量子星尘发布了新的文献求助50
21秒前
22秒前
小姜完成签到,获得积分10
23秒前
24秒前
..RH发布了新的文献求助10
24秒前
栖迟完成签到 ,获得积分10
24秒前
艺涵发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助10
25秒前
负责月光完成签到,获得积分10
25秒前
十一一完成签到,获得积分10
26秒前
思源应助杨ZJ采纳,获得30
26秒前
脑洞疼应助魏欣娜采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Higher taxa of Basidiomycetes 300
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4662993
求助须知:如何正确求助?哪些是违规求助? 4045092
关于积分的说明 12512062
捐赠科研通 3737432
什么是DOI,文献DOI怎么找? 2063908
邀请新用户注册赠送积分活动 1093436
科研通“疑难数据库(出版商)”最低求助积分说明 974203