Integrated Bioinformatics and Machine Learning Analysis Identify ACADL as a Potent Biomarker of Reactive Mesothelial Cells

间皮瘤 间皮细胞 生物标志物 免疫组织化学 接收机工作特性 间皮 支持向量机 Lasso(编程语言) 计算机科学 特征选择 癌症研究 人工智能 生物 医学 机器学习 生物化学 病理 万维网
作者
Y. J. Yin,Qianwen Cui,Jiarong Zhao,Qiang Wu,Qiuyan Sun,Hongqiang Wang,Wulin Yang
出处
期刊:American Journal of Pathology [Elsevier BV]
卷期号:194 (7): 1294-1305
标识
DOI:10.1016/j.ajpath.2024.03.013
摘要

Mesothelial cells with reactive hyperplasia are difficult to distinguish from malignant mesothelioma cells on cell morphology. This study aimed to identify and validate potential biomarkers that distinguish mesothelial cells from mesothelioma cells through machine learning combined with immunohistochemistry (IHC) experiments. We integrated the gene expression matrix from three GEO datasets (GSE2549, GSE12345, GSE51024) to analyze the differently expressed gene (DEGs) between normal and mesothelioma tissues. Then three machine learning algorithms, least absolute shrinkage and selection operator (LASSO), support vector machine-recursive feature elimination (SVM-RFE), and random forest (RF) were used to screen and obtain four shared candidate markers, including ACADL, EMP2, GPD1L, HMMR. The receiver operating characteristic curve (ROC) analysis showed that the area under the curve (AUC) for distinguishing normal from mesothelioma was 0.976, 0.943, 0.962, and 0.956, respectively. The expression and diagnostic performance of these candidate genes were validated in another two independent datasets (GSE42977 and GSE112154), indicating that the performances of ACADL, GPD1L, and HMMR were consistent between the training and validation datasets. Finally, the optimal candidate marker ACADL was verified by IHC assay. ACADL was strongly stained in mesothelial cells, especially for reactive hyperplasic mesothelial cells, but was negative in malignant mesothelioma cells. Therefore, ACADL has the potential to be used as a specific marker of reactive hyperplasic mesothelial cells in the differential diagnosis of mesothelioma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
小二郎应助科研通管家采纳,获得30
刚刚
无花果应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
1秒前
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
魔幻的之云完成签到,获得积分20
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
852应助清时.采纳,获得10
1秒前
顾矜应助haha采纳,获得10
2秒前
2秒前
云泰迪发布了新的文献求助10
3秒前
小白发布了新的文献求助10
3秒前
大个应助激动的访文采纳,获得50
3秒前
xxxxy完成签到,获得积分10
3秒前
吃颗糖吧完成签到,获得积分10
4秒前
XM完成签到 ,获得积分10
4秒前
科研通AI5应助初学小廖采纳,获得30
4秒前
Akim应助清脆松采纳,获得10
4秒前
马户完成签到,获得积分10
5秒前
5秒前
陌折川完成签到 ,获得积分10
5秒前
邵泉颖给邵泉颖的求助进行了留言
5秒前
vv发布了新的文献求助10
6秒前
7秒前
Akim应助nieyaochi采纳,获得10
7秒前
7秒前
石乾刚完成签到,获得积分10
8秒前
王大京完成签到,获得积分10
8秒前
陌折川关注了科研通微信公众号
9秒前
9秒前
orixero应助keke采纳,获得10
9秒前
隐形曼青应助小白采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5001525
求助须知:如何正确求助?哪些是违规求助? 4246659
关于积分的说明 13230789
捐赠科研通 4045478
什么是DOI,文献DOI怎么找? 2213078
邀请新用户注册赠送积分活动 1223305
关于科研通互助平台的介绍 1143569