Integrated Bioinformatics and Machine Learning Analysis Identify ACADL as a Potent Biomarker of Reactive Mesothelial Cells

间皮瘤 间皮细胞 生物标志物 免疫组织化学 接收机工作特性 间皮 支持向量机 Lasso(编程语言) 计算机科学 特征选择 癌症研究 人工智能 生物 医学 机器学习 生物化学 病理 万维网
作者
Y. J. Yin,Qianwen Cui,Jiarong Zhao,Qiang Wu,Qiuyan Sun,Hongqiang Wang,Wulin Yang
出处
期刊:American Journal of Pathology [Elsevier BV]
卷期号:194 (7): 1294-1305
标识
DOI:10.1016/j.ajpath.2024.03.013
摘要

Mesothelial cells with reactive hyperplasia are difficult to distinguish from malignant mesothelioma cells on cell morphology. This study aimed to identify and validate potential biomarkers that distinguish mesothelial cells from mesothelioma cells through machine learning combined with immunohistochemistry (IHC) experiments. We integrated the gene expression matrix from three GEO datasets (GSE2549, GSE12345, GSE51024) to analyze the differently expressed gene (DEGs) between normal and mesothelioma tissues. Then three machine learning algorithms, least absolute shrinkage and selection operator (LASSO), support vector machine-recursive feature elimination (SVM-RFE), and random forest (RF) were used to screen and obtain four shared candidate markers, including ACADL, EMP2, GPD1L, HMMR. The receiver operating characteristic curve (ROC) analysis showed that the area under the curve (AUC) for distinguishing normal from mesothelioma was 0.976, 0.943, 0.962, and 0.956, respectively. The expression and diagnostic performance of these candidate genes were validated in another two independent datasets (GSE42977 and GSE112154), indicating that the performances of ACADL, GPD1L, and HMMR were consistent between the training and validation datasets. Finally, the optimal candidate marker ACADL was verified by IHC assay. ACADL was strongly stained in mesothelial cells, especially for reactive hyperplasic mesothelial cells, but was negative in malignant mesothelioma cells. Therefore, ACADL has the potential to be used as a specific marker of reactive hyperplasic mesothelial cells in the differential diagnosis of mesothelioma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蛇虫鼠蚁发布了新的文献求助10
1秒前
dsjlove发布了新的文献求助10
3秒前
优美的炳发布了新的文献求助10
3秒前
5秒前
张张小白完成签到 ,获得积分10
5秒前
一颗树发布了新的文献求助10
5秒前
yy发布了新的文献求助10
6秒前
隐形曼青应助无事东风采纳,获得10
9秒前
安安发布了新的文献求助10
9秒前
CaoRouLi完成签到,获得积分10
11秒前
15秒前
丘比特应助unowhoiam采纳,获得10
17秒前
深呼吸完成签到,获得积分10
19秒前
19秒前
点心发布了新的文献求助30
20秒前
20秒前
happyboy2008发布了新的文献求助10
25秒前
25秒前
无事东风发布了新的文献求助10
26秒前
Ava应助能量球采纳,获得10
27秒前
27秒前
28秒前
科研通AI5应助大气夏瑶采纳,获得10
29秒前
成就莞完成签到,获得积分10
30秒前
30秒前
隐形曼青应助czcz采纳,获得10
31秒前
pkinglu发布了新的文献求助10
32秒前
33秒前
rzss完成签到,获得积分10
34秒前
34秒前
35秒前
dsjlove完成签到,获得积分10
36秒前
无事东风完成签到,获得积分10
36秒前
小平发布了新的文献求助20
36秒前
37秒前
38秒前
39秒前
39秒前
与共发布了新的文献求助10
40秒前
半颗橙子完成签到 ,获得积分10
40秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794682
求助须知:如何正确求助?哪些是违规求助? 3339473
关于积分的说明 10296151
捐赠科研通 3056157
什么是DOI,文献DOI怎么找? 1676907
邀请新用户注册赠送积分活动 804932
科研通“疑难数据库(出版商)”最低求助积分说明 762216