CSDFormer: A cloud and shadow detection method for landsat images based on transformer

计算机科学 人工智能 像素 卷积神经网络 编码器 模式识别(心理学) 目标检测 特征提取 计算机视觉 操作系统
作者
Jiayi Li,Qunming Wang
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:129: 103799-103799 被引量:20
标识
DOI:10.1016/j.jag.2024.103799
摘要

Cloud and shadow (CS) detection is crucial prerequisite for application of remote sensing images. Current deep learning-based detection algorithms mainly employ Convolutional Neural Networks (CNNs). However, the local receptive field in CNNs cannot effectively capture global contextual information, which hinders accurate characterization of the dependency between clouds and shadows. In vision Transformers, self-attention mechanisms can effectively capture the long-distance dependencies between different regions in an image. Inspired by this, this paper proposed a new CS Detection algorithm based on a Transformer, called CSDFormer. Specifically, we exclusively employed a hierarchical Transformer structure in the encoder stage to extract features of CS. Each Transformer layer contains several multi-head self-attention mechanisms for calculating pixel-wise long-distance connectivity. The designed structure enables the Transformer to better extract global context information, which helps to strengthen the comprehension of the semantic relationships between clouds and shadows. Benefiting from the global feature extraction capability of the encoder stage, we employed several simple multilayer perceptron layers for multi-scale feature map fusion and pixel classification in the decoder stage. The proposed CSDFormer was validated using 898 Landsat 8 Biome images with 512 × 512 pixels, producing an overall accuracy of 95.28 % and a mean intersection over union of 84.08 %, outperforming three state-of-the-art CNN-based algorithms. CSDFormer is consistently more accurate in detection of both clouds and shadows. Owing to the parallel computing capability of the self-attention mechanism, CSDFormer is computationally more efficient than the three CNN-based benchmark methods. For the input spectral bands, the performance of CSDFormer produced can be further enhanced with additional thermal infrared bands.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xdc发布了新的文献求助10
刚刚
章传奇完成签到 ,获得积分10
1秒前
含蓄的白安完成签到,获得积分10
1秒前
2秒前
科研通AI6应助任尔采纳,获得10
2秒前
3秒前
General完成签到 ,获得积分10
3秒前
新手上路完成签到,获得积分10
3秒前
宿刚完成签到,获得积分10
3秒前
WJane完成签到,获得积分10
4秒前
8秒前
小刘医生发布了新的文献求助10
8秒前
taiyan完成签到,获得积分10
10秒前
14秒前
华仔应助zxd采纳,获得10
14秒前
牛初辰完成签到 ,获得积分10
17秒前
17秒前
科研通AI2S应助坦率念文采纳,获得10
18秒前
李健应助丸子头采纳,获得10
19秒前
Apple发布了新的文献求助10
21秒前
科研通AI6应助三哥采纳,获得30
22秒前
QQ完成签到 ,获得积分10
25秒前
28秒前
小刘医生完成签到,获得积分10
28秒前
34秒前
34秒前
zxd发布了新的文献求助10
35秒前
浮游应助秋风知我意采纳,获得10
35秒前
科研通AI6应助Apple采纳,获得30
37秒前
38秒前
38秒前
ceeray23发布了新的文献求助20
39秒前
黑白完成签到 ,获得积分10
39秒前
山渐青发布了新的文献求助10
44秒前
6913发布了新的文献求助10
44秒前
45秒前
冷傲含海发布了新的文献求助10
46秒前
Owen应助走四方采纳,获得10
47秒前
49秒前
lan完成签到,获得积分10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560766
求助须知:如何正确求助?哪些是违规求助? 4646107
关于积分的说明 14677378
捐赠科研通 4587231
什么是DOI,文献DOI怎么找? 2516891
邀请新用户注册赠送积分活动 1490320
关于科研通互助平台的介绍 1461160