Graphormer supervised de novo protein design method and function validation

蛋白质设计 蛋白质工程 计算生物学 计算机科学 序列(生物学) 蛋白质测序 蛋白质结构 生物化学 生物 肽序列 基因
作者
Junxi Mu,Zhengxin Li,Chao Zhang,Qi Zhang,Jamshed Iqbal,Abdul Wadood,Ting Wei,Yuanming Feng,Hai‐Feng Chen
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (3)
标识
DOI:10.1093/bib/bbae135
摘要

Protein design is central to nearly all protein engineering problems, as it can enable the creation of proteins with new biological functions, such as improving the catalytic efficiency of enzymes. One key facet of protein design, fixed-backbone protein sequence design, seeks to design new sequences that will conform to a prescribed protein backbone structure. Nonetheless, existing sequence design methods present limitations, such as low sequence diversity and shortcomings in experimental validation of the designed functional proteins. These inadequacies obstruct the goal of functional protein design. To improve these limitations, we initially developed the Graphormer-based Protein Design (GPD) model. This model utilizes the Transformer on a graph-based representation of three-dimensional protein structures and incorporates Gaussian noise and a sequence random masks to node features, thereby enhancing sequence recovery and diversity. The performance of the GPD model was significantly better than that of the state-of-the-art ProteinMPNN model on multiple independent tests, especially for sequence diversity. We employed GPD to design CalB hydrolase and generated nine artificially designed CalB proteins. The results show a 1.7-fold increase in catalytic activity compared to that of the wild-type CalB and strong substrate selectivity on p-nitrophenyl acetate with different carbon chain lengths (C2-C16). Thus, the GPD method could be used for the de novo design of industrial enzymes and protein drugs. The code was released at https://github.com/decodermu/GPD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yanlulu完成签到 ,获得积分10
刚刚
tangz完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
星辰大海应助hypttkx采纳,获得10
4秒前
苻谷丝完成签到,获得积分10
5秒前
taeyeon完成签到,获得积分10
5秒前
大鱼发布了新的文献求助10
5秒前
tangz发布了新的文献求助10
5秒前
Han发布了新的文献求助30
6秒前
6秒前
充电宝应助ccc采纳,获得10
7秒前
科目三应助The采纳,获得10
8秒前
大笨冰发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
Hopping完成签到 ,获得积分10
9秒前
潜心而学完成签到,获得积分10
10秒前
HaiKing发布了新的文献求助30
10秒前
11秒前
不想干活应助Chrysalism_Saliy采纳,获得10
12秒前
顾矜应助明理的化蛹采纳,获得10
12秒前
卡诺循环完成签到,获得积分10
12秒前
搜集达人应助lmmorz采纳,获得10
12秒前
三分应助靓丽的安筠采纳,获得10
13秒前
刘海洋发布了新的文献求助10
13秒前
lulu发布了新的文献求助10
13秒前
十一发布了新的文献求助10
15秒前
yeah发布了新的文献求助10
15秒前
16秒前
李健的小迷弟应助大鱼采纳,获得10
17秒前
17秒前
18秒前
田様应助拼搏的奄采纳,获得10
19秒前
小二郎应助木子剑光军采纳,获得10
19秒前
20秒前
Hello应助可耐的妙芙采纳,获得10
20秒前
ccc发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4525986
求助须知:如何正确求助?哪些是违规求助? 3965954
关于积分的说明 12291499
捐赠科研通 3630428
什么是DOI,文献DOI怎么找? 1997955
邀请新用户注册赠送积分活动 1034310
科研通“疑难数据库(出版商)”最低求助积分说明 923892