A Target-Speech-Feature-Aware Module for U-Net Based Speech Enhancement

计算机科学 语音识别 语音增强 特征(语言学) 语音活动检测 语音编码 语音处理 线性预测编码 语音合成 人工智能 语言学 哲学 降噪
作者
Kaikun Pei,Lijun Zhang,Dejian Meng,Yikang He
出处
期刊:SAE technical paper series
标识
DOI:10.4271/2024-01-2021
摘要

<div class="section abstract"><div class="htmlview paragraph">Speech enhancement can extract clean speech from noise interference, enhancing its perceptual quality and intelligibility. This technology has significant applications in in-car intelligent voice interaction. However, the complex noise environment inside the vehicle, especially the human voice interference is very prominent, which brings great challenges to the vehicle speech interaction system. In this paper, we propose a speech enhancement method based on target speech features, which can better extract clean speech and improve the perceptual quality and intelligibility of enhanced speech in the environment of human noise interference. To this end, we propose a design method for the middle layer of the U-Net architecture based on Long Short-Term Memory (LSTM), which can automatically extract the target speech features that are highly distinguishable from the noise signal and human voice interference features in noisy speech, and realize the targeted extraction of clean speech. Then, in order to achieve deep fusion between the target speech features and the model, we design a multi-scale deep fusion skip connection method, so that when the effective information flows from the encoder to the decoder, the features with large correlation with the target speech are effectively screened through the weight coefficient of attention. Finally, in order to verify the effectiveness of the proposed module, experiments were carried out on the Voicebank+Demand speech dataset. The results show that the proposed method has strong robustness in the environment with human voice interference. It outperforms other algorithms on metrics such as PESQ, STOI, CSIG, CBAK, COVL, offering cleaner speech with higher perceptual quality and intelligibility. This makes it particularly promising for applications in scenarios with significant human voice interference, such as in-car environments.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MrChew完成签到 ,获得积分10
3秒前
自强不息完成签到 ,获得积分10
12秒前
桐桐应助zhang采纳,获得10
12秒前
舒适的天奇完成签到 ,获得积分10
12秒前
美丽的楼房完成签到 ,获得积分10
15秒前
16秒前
18秒前
好好好完成签到 ,获得积分10
18秒前
学好久完成签到 ,获得积分10
19秒前
航行天下完成签到 ,获得积分10
19秒前
Wang发布了新的文献求助10
20秒前
23秒前
25秒前
崩溃完成签到,获得积分10
26秒前
娅娃儿完成签到 ,获得积分10
27秒前
漫溢阳光完成签到 ,获得积分0
27秒前
zhang发布了新的文献求助10
28秒前
无幻完成签到 ,获得积分10
30秒前
31秒前
若水完成签到 ,获得积分10
37秒前
坚强的元瑶完成签到,获得积分10
37秒前
nicheng完成签到 ,获得积分0
43秒前
ihonest完成签到,获得积分10
53秒前
54秒前
GSQ完成签到,获得积分10
56秒前
平凡中的限量版完成签到,获得积分10
57秒前
59秒前
一苇以航完成签到 ,获得积分10
1分钟前
1分钟前
然来溪完成签到 ,获得积分10
1分钟前
YR完成签到 ,获得积分10
1分钟前
kyle完成签到 ,获得积分10
1分钟前
健忘的晓小完成签到 ,获得积分10
1分钟前
Ava应助甜蜜的代容采纳,获得10
1分钟前
精明寒松完成签到 ,获得积分10
1分钟前
缺粥完成签到 ,获得积分10
1分钟前
Lj完成签到,获得积分10
1分钟前
小墨墨完成签到 ,获得积分10
1分钟前
云墨完成签到 ,获得积分10
1分钟前
胡茶茶完成签到 ,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
壮语核心名词的语言地图及解释 700
ВЕРНЫЙ ДРУГ КИТАЙСКОГО НАРОДА СЕРГЕЙ ПОЛЕВОЙ 500
ВОЗОБНОВЛЕН ВЫПУСК ЖУРНАЛА "КИТАЙ" НА РУССКОМ ЯЗЫКЕ 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3906999
求助须知:如何正确求助?哪些是违规求助? 3452391
关于积分的说明 10870285
捐赠科研通 3178271
什么是DOI,文献DOI怎么找? 1755864
邀请新用户注册赠送积分活动 849164
科研通“疑难数据库(出版商)”最低求助积分说明 791387