Research on the Oscillation Reduction Control During Gearshift in Hybrid Electric Vehicles

还原(数学) 振荡(细胞信号) 汽车工程 控制(管理) 控制理论(社会学) 计算机科学 工程类 人工智能 数学 遗传学 几何学 生物
作者
Junchao Jing,Junzhi Zhang,Yiqiang Liu,Weishan Huang,Zhengxing Dai
出处
期刊:SAE technical paper series
标识
DOI:10.4271/2024-01-2718
摘要

<div class="section abstract"><div class="htmlview paragraph">In order to realize the shift control of dual-motor hybrid electric vehicle (HEV), a non-power interruption shift control method based on three-power source coordination control was proposed by analyzing the shift process of dual-motor hybrid configuration. The shift control process was divided into three stages: oil-filling self-learning stage, torque exchange stage and inertia control stage. In the torque exchange stage, the characteristics of the speed stage and torque stage were analyzed, which was different from the traditional method's dependence on pressure sensor, longitudinal acceleration sensor and engine torque accuracy. A shift clutch gain self-learning strategy based on shift time and input shaft speed soaring problem was proposed. In the shift process, the parameters were adjusted by self-learning, and the shift time after learning could gradually approach the set target value, and the input shaft speed soaring phenomenon could be gradually eliminated, and the shift quality was significantly improved, which ensured the consistency of shift quality after different vehicles, different engines and different transmissions were integrated, as well as the consistency of driving performance of the vehicle in the product life cycle. In the inertia control stage, The torque intervention strategy has been used in this paper to shorten the inertia phase time to meet the driver's intention quickly. The results show that the time of inertial phase can be greatly shorten by the intervention control of shifting inertial phase and the adaptive method in this paper can effectively detect the shift time too long or too short and flare shift anomalies during the shift process.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dajiejie完成签到 ,获得积分10
1秒前
Ding-Ding完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
3秒前
龙傲天完成签到,获得积分10
4秒前
谨慎哈密瓜完成签到,获得积分10
5秒前
翔子发布了新的文献求助10
6秒前
YG完成签到,获得积分10
8秒前
丘比特应助翔子采纳,获得10
10秒前
月亮在o完成签到 ,获得积分10
10秒前
CipherSage应助耍酷的世平采纳,获得10
11秒前
科研通AI5应助hellobaboon采纳,获得10
13秒前
13秒前
14秒前
超级的千青完成签到 ,获得积分10
16秒前
科研通AI5应助科研通管家采纳,获得50
18秒前
18秒前
李爱国应助科研通管家采纳,获得10
18秒前
乐乐应助科研通管家采纳,获得10
18秒前
汉堡包应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
18秒前
小刘一定能读C9博完成签到 ,获得积分10
18秒前
19秒前
桐桐应助冷静的奇迹采纳,获得10
20秒前
wzz完成签到,获得积分10
21秒前
秃头披风侠完成签到,获得积分10
21秒前
飘逸初蓝完成签到,获得积分10
21秒前
NexusExplorer应助小蚊子采纳,获得10
22秒前
暗月皇发布了新的文献求助10
24秒前
25秒前
25秒前
biang完成签到,获得积分10
28秒前
28秒前
零碎的岛屿应助冷傲迎梦采纳,获得10
29秒前
30秒前
善学以致用应助飘逸初蓝采纳,获得10
30秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781132
求助须知:如何正确求助?哪些是违规求助? 3326545
关于积分的说明 10227747
捐赠科研通 3041707
什么是DOI,文献DOI怎么找? 1669585
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758745