A lung disease diagnosis algorithm based on 2D spectral features of ultrasound RF signals

超声波 医学 模态(人机交互) 算法 标准差 接收机工作特性 放射科 医学诊断 信号(编程语言) 计算机科学 人工智能 统计 数学 内科学 程序设计语言
作者
Qi Zhang,Renjie Song,Jing Hang,Siqi Wei,Yifei Zhu,Guofeng Zhang,Bo Ding,Xinhua Ye,Xiasheng Guo,Dong Zhang,Pingping Wu,Han Lin,Juan Tu
出处
期刊:Ultrasonics [Elsevier]
卷期号:140: 107315-107315 被引量:2
标识
DOI:10.1016/j.ultras.2024.107315
摘要

Lung diseases are commonly diagnosed based on clinical pathological indications criteria and radiological imaging tools (e.g., X-rays and CT). During a pandemic like COVID-19, the use of ultrasound imaging devices has broadened for emergency examinations by taking their unique advantages such as portability, real-time detection, easy operation and no radiation. This provides a rapid, safe, and cost-effective imaging modality for screening lung diseases. However, the current pulmonary ultrasound diagnosis mainly relies on the subjective assessments of sonographers, which has high requirements for the operator's professional ability and clinical experience. In this study, we proposed an objective and quantifiable algorithm for the diagnosis of lung diseases that utilizes two-dimensional (2D) spectral features of ultrasound radiofrequency (RF) signals. The ultrasound data samples consisted of a set of RF signal frames, which were collected by professional sonographers. In each case, a region of interest of uniform size was delineated along the pleural line. The standard deviation curve of the 2D spatial spectrum was calculated and smoothed. A linear fit was applied to the high-frequency segment of the processed data curve, and the slope of the fitted line was defined as the frequency spectrum standard deviation slope (FSSDS). Based on the current data, the method exhibited a superior diagnostic sensitivity of 98% and an accuracy of 91% for the identification of lung diseases. The area under the curve obtained by the current method exceeded the results obtained that interpreted by professional sonographers, which indicated that the current method could provide strong support for the clinical ultrasound diagnosis of lung diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星上绮山完成签到,获得积分20
1秒前
www发布了新的文献求助10
2秒前
3秒前
顺利毕业完成签到,获得积分20
4秒前
4秒前
DG发布了新的文献求助10
5秒前
maclogos发布了新的文献求助50
6秒前
6秒前
b3lyp发布了新的文献求助10
7秒前
Ping完成签到,获得积分10
7秒前
7秒前
lena完成签到 ,获得积分20
7秒前
7秒前
orixero应助hansongluo采纳,获得10
7秒前
7秒前
8秒前
泓凯骏完成签到 ,获得积分10
8秒前
anhao完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
大卷完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
菁菁菁瑜完成签到,获得积分10
12秒前
大力的一斩完成签到,获得积分20
12秒前
蓝天应助她在他城采纳,获得10
12秒前
gyro发布了新的文献求助10
12秒前
12秒前
13秒前
loert发布了新的文献求助10
13秒前
14秒前
LZX发布了新的文献求助10
14秒前
15秒前
南风知我意完成签到,获得积分20
15秒前
裴115发布了新的文献求助10
16秒前
小鬼完成签到,获得积分10
16秒前
17秒前
sheeptime发布了新的文献求助10
17秒前
ding应助gyro采纳,获得10
18秒前
Mine_cherry应助smh采纳,获得30
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5712429
求助须知:如何正确求助?哪些是违规求助? 5209804
关于积分的说明 15267369
捐赠科研通 4864354
什么是DOI,文献DOI怎么找? 2611366
邀请新用户注册赠送积分活动 1561656
关于科研通互助平台的介绍 1518919