已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

iAFPs-Mv-BiTCN: Predicting antifungal peptides using self-attention transformer embedding and transform evolutionary based multi-view features with bidirectional temporal convolutional networks

计算机科学 编码器 嵌入 人工智能 判别式 模式识别(心理学) 卷积神经网络 文字嵌入 机器学习 操作系统
作者
Shahid Akbar,Quan Zou,Ali Raza,Fawaz Khaled Alarfaj
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:151: 102860-102860 被引量:63
标识
DOI:10.1016/j.artmed.2024.102860
摘要

Globally, fungal infections have become a major health concern in humans. Fungal diseases generally occur due to the invading fungus appearing on a specific portion of the body and becoming hard for the human immune system to resist. The recent emergence of COVID-19 has intensely increased different nosocomial fungal infections. The existing wet-laboratory-based medications are expensive, time-consuming, and may have adverse side effects on normal cells. In the last decade, peptide therapeutics have gained significant attention due to their high specificity in targeting affected cells without affecting healthy cells. Motivated by the significance of peptide-based therapies, we developed a highly discriminative prediction scheme called iAFPs-Mv-BiTCN to predict antifungal peptides correctly. The training peptides are encoded using word embedding methods such as skip-gram and attention mechanism based bidirectional encoder representation using transformer. Additionally, transform-based evolutionary features are generated using the Pseduo position-specific scoring matrix using discrete wavelet transform (PsePSSM-DWT). The fused vector of word embedding and evolutionary descriptors is formed to compensate for the limitations of single encoding methods. A Shapley Additive exPlanations (SHAP) based global interpolation approach is applied to reduce training costs by choosing the optimal feature set. The selected feature set is trained using a bi-directional temporal convolutional network (BiTCN). The proposed iAFPs-Mv-BiTCN model achieved a predictive accuracy of 98.15 % and an AUC of 0.99 using training samples. In the case of the independent samples, our model obtained an accuracy of 94.11 % and an AUC of 0.98. Our iAFPs-Mv-BiTCN model outperformed existing models with a ~ 4 % and ~ 5 % higher accuracy using training and independent samples, respectively. The reliability and efficacy of the proposed iAFPs-Mv-BiTCN model make it a valuable tool for scientists and may perform a beneficial role in pharmaceutical design and research academia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
女儿国最后的希望完成签到,获得积分10
刚刚
执着的忆曼完成签到,获得积分10
1秒前
Ava应助羊羊酱采纳,获得10
2秒前
hhhhh完成签到 ,获得积分0
2秒前
称心芷巧完成签到,获得积分10
3秒前
脱锦涛完成签到 ,获得积分10
4秒前
打打应助Wqhao采纳,获得10
5秒前
小奋青完成签到 ,获得积分10
8秒前
满意机器猫完成签到 ,获得积分10
12秒前
13秒前
力劈华山完成签到,获得积分10
16秒前
绿水晶完成签到 ,获得积分10
16秒前
20秒前
NexusExplorer应助七宝大当家采纳,获得10
20秒前
20秒前
CipherSage应助Li采纳,获得10
21秒前
21秒前
21秒前
xl_c完成签到 ,获得积分10
23秒前
聪明夏波发布了新的文献求助10
25秒前
26秒前
make217完成签到 ,获得积分10
26秒前
GYJ完成签到 ,获得积分10
28秒前
秦长春发布了新的文献求助10
29秒前
31秒前
jyh完成签到,获得积分20
34秒前
jyh发布了新的文献求助10
37秒前
量子星尘发布了新的文献求助10
40秒前
科研通AI6应助科研通管家采纳,获得10
42秒前
xpy关闭了xpy文献求助
42秒前
香蕉觅云应助科研通管家采纳,获得10
42秒前
打打应助科研通管家采纳,获得10
42秒前
上官若男应助科研通管家采纳,获得10
42秒前
科研通AI2S应助科研通管家采纳,获得10
42秒前
22222应助科研通管家采纳,获得100
42秒前
42秒前
科研通AI2S应助秦长春采纳,获得10
42秒前
45秒前
DUWEI完成签到 ,获得积分10
47秒前
Li发布了新的文献求助10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663986
求助须知:如何正确求助?哪些是违规求助? 4856002
关于积分的说明 15106826
捐赠科研通 4822369
什么是DOI,文献DOI怎么找? 2581425
邀请新用户注册赠送积分活动 1535585
关于科研通互助平台的介绍 1493853