Utilizing Non-click Samples via Semi-supervised Learning for Conversion Rate Prediction

计算机科学 点击率 人工智能 机器学习 情报检索
作者
Jiahui Huang,Lan Zhang,Junhao Wang,Shanyang Jiang,Dongbo Huang,Cheng Ding,Lan Xu
标识
DOI:10.1145/3640457.3688151
摘要

Conversion rate (CVR) prediction is essential in recommender systems, facilitating precise matching between recommended items and users' preferences. However, the sample selection bias (SSB) and data sparsity (DS) issues pose challenges to accurate prediction. Existing works have proposed the click-through and conversion rate (CTCVR) prediction task which models samples from exposure to ``click and conversion" in entire space and incorporates multi-task learning. This approach has shown efficacy in mitigating these challenges. Nevertheless, it intensifies the false negative sample (FNS) problem. To be more specific, the CTCVR task implicitly treats all the CVR labels of non-click samples as negative, overlooking the possibility that some samples might convert if clicked. This oversight can negatively impact CVR model performance, as empirical analysis has confirmed. To this end, we advocate for discarding the CTCVR task and proposing a Non-click samples Improved Semi-supErvised (NISE) method for conversion rate prediction, where the non-click samples are treated as unlabeled. Our approach aims to predict their probabilities of conversion if clicked, utilizing these predictions as pseudo-labels for further model training. This strategy can help alleviate the FNS problem, and direct modeling of the CVR task across the entire space also mitigates the SSB and DS challenges. Additionally, we conduct multi-task learning by introducing an auxiliary click-through rate prediction task, thereby enhancing embedding layer representations. Our approach is applicable to various multi-task architectures. Comprehensive experiments are conducted on both public and production datasets, demonstrating the superiority of our proposed method in mitigating the FNS challenge and improving the CVR estimation. The implementation code is available at https://github.com/Hjh233/NISE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huanir99发布了新的文献求助10
刚刚
Sw1ft完成签到 ,获得积分10
1秒前
孤独梦安完成签到,获得积分10
3秒前
5秒前
饮一杯为谁丶完成签到,获得积分10
8秒前
Robert完成签到,获得积分10
9秒前
加快步伐发布了新的文献求助10
10秒前
洛洛发布了新的文献求助10
11秒前
12秒前
qq完成签到,获得积分10
16秒前
16秒前
归雁发布了新的文献求助10
17秒前
zhouleiwang发布了新的文献求助10
19秒前
加快步伐完成签到,获得积分10
19秒前
20秒前
sunny完成签到,获得积分10
20秒前
22秒前
26秒前
今天的风儿甚是喧嚣完成签到,获得积分10
26秒前
自由橘子完成签到 ,获得积分10
29秒前
30秒前
孟伟完成签到,获得积分10
31秒前
昏睡的蟠桃应助科研通管家采纳,获得200
31秒前
wy.he应助科研通管家采纳,获得30
32秒前
传奇3应助科研通管家采纳,获得10
32秒前
32秒前
Jasper应助科研通管家采纳,获得30
32秒前
wy.he应助科研通管家采纳,获得20
32秒前
qiao应助科研通管家采纳,获得10
32秒前
丘比特应助科研通管家采纳,获得10
32秒前
orixero应助科研通管家采纳,获得10
32秒前
思源应助科研通管家采纳,获得10
32秒前
ding应助科研通管家采纳,获得10
32秒前
33秒前
小蘑菇应助科研通管家采纳,获得10
33秒前
NexusExplorer应助科研通管家采纳,获得10
33秒前
NexusExplorer应助科研通管家采纳,获得10
33秒前
zmnzmnzmn应助科研通管家采纳,获得10
33秒前
Hello应助科研通管家采纳,获得10
33秒前
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777911
求助须知:如何正确求助?哪些是违规求助? 3323444
关于积分的说明 10214462
捐赠科研通 3038671
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798207
科研通“疑难数据库(出版商)”最低求助积分说明 758304