A Collaborative Federated Learning Framework for Lung and Colon Cancer Classifications

结直肠癌 计算机科学 肺癌 医学 癌症 万维网 肿瘤科 内科学
作者
Md. Munawar Hossain,Md. Robiul Islam,Md. Faysal Ahamed,Mominul Ahsan,Julfikar Haider
出处
期刊:Technologies (Basel) [Multidisciplinary Digital Publishing Institute]
卷期号:12 (9): 151-151
标识
DOI:10.3390/technologies12090151
摘要

Lung and colon cancers are common types of cancer with significant fatality rates. Early identification considerably improves the odds of survival for those suffering from these diseases. Histopathological image analysis is crucial for detecting cancer by identifying morphological anomalies in tissue samples. Regulations such as the HIPAA and GDPR impose considerable restrictions on the sharing of sensitive patient data, mostly because of privacy concerns. Federated learning (FL) is a promising technique that allows the training of strong models while maintaining data privacy. The use of a federated learning strategy has been suggested in this study to address privacy concerns in cancer categorization. To classify histopathological images of lung and colon cancers, this methodology uses local models with an Inception-V3 backbone. The global model is then updated on the basis of the local weights. The images were obtained from the LC25000 dataset, which consists of five separate classes. Separate analyses were performed for lung cancer, colon cancer, and their combined classification. The implemented model successfully classified lung cancer images into three separate classes with a classification accuracy of 99.867%. The classification of colon cancer images was achieved with 100% accuracy. More significantly, for the lung and colon cancers combined, the accuracy reached an impressive 99.720%. Compared with other current approaches, the proposed framework showed an improved performance. A heatmap, visual saliency map, and GradCAM were generated to pinpoint the crucial areas in the histopathology pictures of the test set where the models focused in particular during cancer class predictions. This approach demonstrates the potential of federated learning to enhance collaborative efforts in automated disease diagnosis through medical image analysis while ensuring patient data privacy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xx完成签到,获得积分10
刚刚
刚刚
刚刚
KK完成签到 ,获得积分10
刚刚
魏东芝发布了新的文献求助10
刚刚
willis发布了新的文献求助10
刚刚
kekekelili完成签到,获得积分10
1秒前
1秒前
凉水完成签到,获得积分10
1秒前
yuri发布了新的文献求助10
4秒前
佳佳发布了新的文献求助10
4秒前
Haoxiang发布了新的文献求助10
6秒前
Fe_001完成签到 ,获得积分10
6秒前
Luminous1123发布了新的文献求助10
6秒前
7秒前
9秒前
GGBond完成签到,获得积分10
9秒前
10秒前
10秒前
落日里的7目夂完成签到 ,获得积分10
10秒前
科研通AI2S应助ouLniM采纳,获得10
11秒前
11秒前
Hello应助1111222333采纳,获得10
11秒前
grumpysquirel发布了新的文献求助10
12秒前
12秒前
14秒前
ROMANTIC完成签到 ,获得积分10
15秒前
佳佳完成签到,获得积分20
16秒前
申蕾完成签到,获得积分10
16秒前
16秒前
16秒前
jiang完成签到 ,获得积分10
16秒前
17秒前
魏东芝完成签到,获得积分10
17秒前
一只羊完成签到 ,获得积分10
18秒前
开放鸿涛应助大佬求带采纳,获得10
18秒前
grumpysquirel完成签到,获得积分10
18秒前
Hyde完成签到,获得积分10
18秒前
fine发布了新的文献求助10
19秒前
19秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801165
求助须知:如何正确求助?哪些是违规求助? 3346853
关于积分的说明 10330624
捐赠科研通 3063166
什么是DOI,文献DOI怎么找? 1681445
邀请新用户注册赠送积分活动 807567
科研通“疑难数据库(出版商)”最低求助积分说明 763728