A Novel Rehabilitation Action Recognition Approach Using AF-LiteFormer from Millimeter Wave Radar

极高频率 动作(物理) 雷达 毫米 康复 计算机科学 物理 医学 光学 电信 物理疗法 量子力学
作者
Jiangang Yi,Hongfeng Zou,Rui Yuan,Gao Jun,Shiyu Fu
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad7b60
摘要

Abstract Rehabilitation action recognition is a hot research topic in the medical field, which serves as the foundation for achieving remote healthcare, unsupervised exercise, intelligent home healthcare, and possesses extensive application value. Currently, vision-based action recognition methods are susceptible to limitations imposed by factors such as range of motion and environmental lighting during human motion capture. Due to its ability to effectively protect patient privacy and its immunity to lighting conditions, this paper proposed a millimeter-wave radar-based rehabilitation action recognition system, AF-LiteFormer. Firstly, EfficientFormerV2 is employed as the baseline, then a Lite-MSLA-FFN block-and-layer is designed to replace MHSA in EfficientFormerV2, which improves the diversity of attention and reduces computational complexity. Meanwhile, a Lite-Subsample block-and-layer is designed to replace the dual-path downsampling part that composed of attention downsampling and stride attention to realize global modeling and multi-scale learning.
Secondly, the iterative attention feature fusion (iAFF) mechanism is introduced to improve the recognition accuracy of rehabilitation actions. Finally, the effectiveness of the AF-LiteFormer model is validated on a self-collected rehabilitation action dataset and a publicly available micro-Doppler dataset. Experimental results show that the overall performance of the AF-LiteFormer model is better than the State-of-the-Art model (SOTA), the recognition accuracy of rehabilitation actions is as high as 99.7%, and it has strong generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
动漫大师发布了新的文献求助30
刚刚
Nari完成签到,获得积分10
1秒前
1秒前
Emily发布了新的文献求助10
2秒前
酷波er应助蓝兰采纳,获得10
3秒前
3秒前
阿圆发布了新的文献求助20
6秒前
nihao完成签到,获得积分10
10秒前
222123发布了新的文献求助20
10秒前
SYLH应助qqa采纳,获得10
10秒前
10秒前
11秒前
LinglongCai完成签到 ,获得积分10
11秒前
平常的毛豆应助自觉石头采纳,获得10
11秒前
13秒前
pdf发布了新的文献求助10
14秒前
鹿旅发布了新的文献求助10
14秒前
15秒前
17秒前
ZZRR发布了新的文献求助10
17秒前
18秒前
100发布了新的文献求助10
19秒前
旭琦完成签到 ,获得积分10
21秒前
赘婿应助卑微打工人采纳,获得10
21秒前
21秒前
木子成发布了新的文献求助10
22秒前
Jerry完成签到,获得积分10
22秒前
临诗发布了新的文献求助10
23秒前
SiDi发布了新的文献求助30
24秒前
科研通AI5应助影子1127采纳,获得100
25秒前
25秒前
61发布了新的文献求助30
25秒前
26秒前
SiDi完成签到,获得积分10
29秒前
俏皮的一德完成签到,获得积分10
29秒前
31秒前
摆渡人发布了新的文献求助10
31秒前
31秒前
35秒前
35秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787081
求助须知:如何正确求助?哪些是违规求助? 3332740
关于积分的说明 10257327
捐赠科研通 3048149
什么是DOI,文献DOI怎么找? 1672981
邀请新用户注册赠送积分活动 801549
科研通“疑难数据库(出版商)”最低求助积分说明 760271