Research on English Online Teaching Model Based on Association Rules Driven by Big Data

联想(心理学) 大数据 关联规则学习 数据关联 在线教学 计算机科学 数学教育 数据科学 工程类 心理学 数据挖掘 人工智能 概率逻辑 心理治疗师
作者
Zhuo Li
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
标识
DOI:10.1142/s0129156425400178
摘要

In today’s information age, big data has become an indispensable and important resource in various fields, and the education sector is no exception. With the explosive growth of educational data, how to effectively mine and utilize this data to optimize the education and teaching process has become a focus of attention for educators and researchers. Among them, association rule mining, as an important data mining technique, is increasingly widely used in the field of education. This investigation delves into the deployment of association rule mining within the framework of English online teaching models, capitalizing on the burgeoning domain of big data. In the era of exponentially advancing information technology, big data has crystallized as an integral component for educational enhancement in both pedagogical quality and methodologies. Initially, this paper dissects a spectrum of extant teaching paradigms propelled by big data analytics. The discourse then pivots to scrutinize the contemporary landscape and the evolution of English online pedagogy. Employing association rule analysis, the study excavates a trove of significant patterns and linkages from voluminous datasets of online educational activities. The insights gleaned serve as a compass for refining instructional strategies and judiciously distributing educational resources. The empirical evidence underscores the proposition that granular examination of student engagement metrics and scholastic achievement empowers educators to tailor bespoke educational trajectories, thereby amplifying pedagogical efficacy and enriching the academic voyage. Beyond furnishing an avant-garde outlook on English online instruction, the findings proffer a substantive benchmark for e-pedagogy across diverse academic disciplines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gyl完成签到 ,获得积分10
刚刚
爆米花应助清秀豪英采纳,获得10
刚刚
orchid发布了新的文献求助10
1秒前
1秒前
hwl12138完成签到,获得积分20
2秒前
3秒前
3秒前
程勋航发布了新的文献求助10
5秒前
研友_Y59785应助科研通管家采纳,获得10
7秒前
慕青应助iuim采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
研友_Y59785应助科研通管家采纳,获得10
7秒前
7秒前
研友_Y59785应助科研通管家采纳,获得10
7秒前
7秒前
卓卓完成签到,获得积分10
7秒前
8秒前
10秒前
10秒前
10秒前
学学术术小小白白完成签到,获得积分10
11秒前
11秒前
11秒前
mz完成签到 ,获得积分10
12秒前
13秒前
来一客温暖完成签到,获得积分20
13秒前
乌龙茶干完成签到,获得积分10
14秒前
14秒前
14秒前
研友_ZAyqJZ完成签到,获得积分10
14秒前
15秒前
丹dan完成签到,获得积分10
15秒前
传奇3应助H28G采纳,获得10
16秒前
16秒前
啦啦啦完成签到 ,获得积分10
17秒前
18秒前
机灵的幻灵完成签到 ,获得积分10
19秒前
iuim发布了新的文献求助10
19秒前
JW发布了新的文献求助10
19秒前
清秀豪英发布了新的文献求助10
20秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783306
求助须知:如何正确求助?哪些是违规求助? 3328584
关于积分的说明 10237387
捐赠科研通 3043770
什么是DOI,文献DOI怎么找? 1670643
邀请新用户注册赠送积分活动 799811
科研通“疑难数据库(出版商)”最低求助积分说明 759130