Application of spectroscopic technology with machine learning in Chinese herbs from seeds to medicinal materials: The case of genus Paris

种质资源 中草药 质量(理念) 鉴定(生物学) 草药 计算机科学 化学 传统医学 生物技术 中医药 植物 生物 医学 物理 替代医学 病理 量子力学
作者
Yangna Feng,Xinyan Zhu,Yuanzhong Wang
出处
期刊:Journal of Pharmaceutical Analysis [Elsevier BV]
卷期号:15 (2): 101103-101103 被引量:1
标识
DOI:10.1016/j.jpha.2024.101103
摘要

To ensure the safety and efficacy of Chinese herbs, it is of great significance to conduct rapid quality detection of Chinese herbs at every link of their supply chain. Spectroscopic technology can reflect the overall chemical composition and structural characteristics of Chinese herbs, with the multi-component and multitarget characteristics of Chinese herbs. This review took the genus Paris as an example, and applications of spectroscopic technology with machine learning (ML) in supply chain of the genus Paris from seeds to medicinal materials were introduced. The specific contents included the confirmation of germplasm resources, identification of growth years, cultivar, geographical origin, and original processing and processing methods. The potential application of spectroscopic technology in genus Paris was pointed out, and the prospects of combining spectroscopic technology with blockchain were proposed. The summary and prospects presented in this paper will be beneficial to the quality control of the genus Paris in all links of its supply chain, so as to rationally use the genus Paris resources and ensure the safety and efficacy of medication.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
南宫问天发布了新的文献求助10
3秒前
橙子完成签到,获得积分10
3秒前
4秒前
共享精神应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
我是老大应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
7秒前
科目三应助灵梦柠檬酸采纳,获得10
8秒前
赵文悦完成签到,获得积分10
8秒前
8秒前
小马甲应助橙子采纳,获得10
10秒前
10秒前
古往今来应助失眠的莫英采纳,获得20
10秒前
water应助dd采纳,获得10
11秒前
11秒前
12秒前
13秒前
Ava应助DJ采纳,获得10
13秒前
15秒前
15秒前
water应助iMoney采纳,获得10
15秒前
15秒前
Owen应助杨123采纳,获得10
17秒前
上官若男应助饱满的醉山采纳,获得10
17秒前
18秒前
小二郎应助Ru采纳,获得10
19秒前
vvvv发布了新的文献求助30
19秒前
20秒前
baifeicao完成签到,获得积分10
21秒前
21秒前
失眠的莫英完成签到,获得积分10
22秒前
22秒前
gk完成签到,获得积分10
22秒前
西贝发布了新的文献求助10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Composite Predicates in English 300
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3982367
求助须知:如何正确求助?哪些是违规求助? 3525972
关于积分的说明 11229581
捐赠科研通 3263807
什么是DOI,文献DOI怎么找? 1801681
邀请新用户注册赠送积分活动 879994
科研通“疑难数据库(出版商)”最低求助积分说明 807767