清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Constructing a Large Language Model to Generate Impressions from Findings in Radiology Reports

医学 放射科 语言学 哲学
作者
Lu Zhang,Mingqian Liu,Lingyun Wang,Y Zhang,Xiangjun Xu,Zhijun Pan,Yan Feng,Jue Zhao,Lin Zhang,Gehong Yao,Xu Chen,Xueqian Xie
出处
期刊:Radiology [Radiological Society of North America]
卷期号:312 (3) 被引量:5
标识
DOI:10.1148/radiol.240885
摘要

Background The specialization and complexity of radiology makes the automatic generation of radiologic impressions (ie, a diagnosis with differential diagnosis and management recommendations) challenging. Purpose To develop a large language model (LLM) that generates impressions based on imaging findings and to evaluate its performance in professional and linguistic dimensions. Materials and Methods Six radiologists recorded imaging examination findings from August 2 to 31, 2023, at Shanghai General Hospital and used the developed LLM before routinely writing report impressions for multiple radiologic modalities (CT, MRI, radiography, mammography) and anatomic sites (cranium and face, neck, chest, upper abdomen, lower abdomen, vessels, bone and joint, spine, breast), making necessary corrections and completing the radiologic impression. A subset was defined to investigate cases where the LLM-generated impressions differed from the final radiologist impressions by excluding identical and highly similar cases. An expert panel scored the LLM-generated impressions on a five-point Likert scale (5 = strongly agree) based on scientific terminology, coherence, specific diagnosis, differential diagnosis, management recommendations, correctness, comprehensiveness, harmlessness, and lack of bias. Results In this retrospective study, an LLM was pretrained using 20 GB of medical and general-purpose text data. The fine-tuning data set comprised 1.5 GB of data, including 800 radiology reports with paired instructions (describing the output task in natural language) and outputs. Test set 2 included data from 3988 patients (median age, 56 years [IQR, 40-68 years]; 2159 male). The median recall, precision, and F1 score of LLM-generated impressions were 0.775 (IQR, 0.56-1), 0.84 (IQR, 0.611-1), and 0.772 (IQR, 0.578-0.957), respectively, using the final impressions as the reference standard. In a subset of 1014 patients (median age, 57 years [IQR, 42-69 years]; 528 male), the overall median expert panel score for LLM-generated impressions was 5 (IQR, 5-5), ranging from 4 (IQR, 3-5) to 5 (IQR, 5-5). Conclusion The developed LLM generated radiologic impressions that were professionally and linguistically appropriate for a full spectrum of radiology examinations. © RSNA, 2024
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大力水手完成签到 ,获得积分10
21秒前
光合作用完成签到,获得积分10
42秒前
lzxbarry完成签到,获得积分0
1分钟前
widesky777完成签到 ,获得积分0
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
CJW完成签到 ,获得积分10
1分钟前
ldjldj_2004完成签到 ,获得积分10
2分钟前
1117完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
水哥完成签到 ,获得积分10
3分钟前
勤奋的灯完成签到 ,获得积分10
4分钟前
Party完成签到 ,获得积分10
4分钟前
卓矢完成签到 ,获得积分10
6分钟前
方白秋完成签到,获得积分10
6分钟前
Sunny完成签到,获得积分10
6分钟前
6分钟前
noss发布了新的文献求助10
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
袁青寒发布了新的文献求助10
6分钟前
袁青寒发布了新的文献求助10
6分钟前
袁青寒发布了新的文献求助10
6分钟前
袁青寒发布了新的文献求助10
6分钟前
袁青寒发布了新的文献求助10
6分钟前
稻子完成签到 ,获得积分10
7分钟前
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
共享精神应助袁青寒采纳,获得10
8分钟前
852应助袁青寒采纳,获得10
8分钟前
凯文完成签到 ,获得积分10
8分钟前
8分钟前
woxinyouyou完成签到,获得积分0
10分钟前
lingling完成签到 ,获得积分10
10分钟前
HiNDT发布了新的文献求助10
10分钟前
Jemma完成签到 ,获得积分10
11分钟前
润润轩轩完成签到 ,获得积分10
12分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776014
求助须知:如何正确求助?哪些是违规求助? 3321534
关于积分的说明 10206222
捐赠科研通 3036609
什么是DOI,文献DOI怎么找? 1666373
邀请新用户注册赠送积分活动 797395
科研通“疑难数据库(出版商)”最低求助积分说明 757805