等离子体子
光子学
生物传感器
折射率
材料科学
光电子学
光学
物理
纳米技术
作者
Abdelhak Dhibi,Abdullah F. Alabiad,Amel Abassi,Raja Rabhi,Lassaad Barhoumi,Nordin Félidj,Nadia Djaker
出处
期刊:Physica Scripta
[IOP Publishing]
日期:2024-08-27
卷期号:99 (10): 105520-105520
被引量:1
标识
DOI:10.1088/1402-4896/ad7412
摘要
Abstract In this paper, we propose a novel structure for biosensors based on a diffraction grating to diagnose four types of cancers cells. This biosensor is used to detect Hela, Jurkat, PC12, MDA-MB-231 and MCF-7 cancerous cells, based on their refractive indices. The present configuration consists of a glass layer covered by a gold layer, a grating coated by a silicon nitride layer separating the sensor from sensing medium. Bound states in the continuum (BIC) in a hybrid plasmonic-photonic structure can be achieved at Γ point and off-Γ. The symmetry-protected BIC is formed at the Γ-point of the periodic system due to the strong coupling between plasmonic or photonic modes. On the other hand, the Friedrich-Wintgen (FW) BICs can be readily achieved off-Γ due to the strong coupling between plasmonic and photonic modes. A comparative study is made on the basis of three BICs (plasmonic BIC, photonic BIC, and FW-BIC). Here, numerical analysis based on the Rigorous coupled-wave analysis method (RCWA) is performed to optimize the biosensor sensitivity, by also considering the full width at half maximum (FWHM), detection accuracy (DA), and figure of merit (FoM). The FW BIC-based biosensor for photonic mode exhibits the highest S of 1208nm/RIU, low FWHM of 0.5 nm, the maximum DA of 2 nm −1 , and best FoM of 2416 RIU −1 .
科研通智能强力驱动
Strongly Powered by AbleSci AI