Deep learning reveals cuproptosis features assist in predict prognosis and guide immunotherapy in lung adenocarcinoma

免疫疗法 放射治疗 腺癌 肿瘤科 医学 免疫系统 内科学 化疗 免疫学 癌症
作者
Gang Li,Qingsong Luo,Xuehai Wang,Zeng Fu-chun,Gang Feng,Guowei Che
出处
期刊:Frontiers in Endocrinology [Frontiers Media]
卷期号:13 被引量:13
标识
DOI:10.3389/fendo.2022.970269
摘要

Cuproptosis is a recently found non-apoptotic cell death type that holds promise as an emerging therapeutic modality in lung adenocarcinoma (LUAD) patients who develop resistance to radiotherapy and chemotherapy. However, the Cuproptosis' role in the onset and progression of LUAD remains unclear.Cuproptosis-related genes (CRGs) were identified by a co-expression network approach based on LUAD cell line data from radiotherapy, and a robust risk model was developed using deep learning techniques based on prognostic CRGs and explored the value of deep learning models systematically for clinical applications, functional enrichment analysis, immune infiltration analysis, and genomic variation analysis.A three-layer artificial neural network risk model was constructed based on 15 independent prognostic radiotherapy-related CRGs. The risk model was observed as a robust independent prognostic factor for LUAD in the training as well as three external validation cohorts. The patients present in the low-risk group were found to have immune "hot" tumors exhibiting anticancer activity, whereas the high-risk group patients had immune "cold" tumors with active metabolism and proliferation. The high-risk group patients were more sensitive to chemotherapy whereas the low-risk group patients were more sensitive to immunotherapy. Genomic variants did not vary considerably among both groups of patients.Our findings advance the understanding of cuproptosis and offer fresh perspectives on the clinical management and precision therapy of LUAD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
船长完成签到,获得积分10
刚刚
科研通AI5应助Culto采纳,获得10
1秒前
平淡萤发布了新的文献求助10
2秒前
4秒前
7秒前
8秒前
10秒前
艾克发布了新的文献求助10
11秒前
Culto发布了新的文献求助10
13秒前
海岢完成签到,获得积分10
14秒前
阿银发布了新的文献求助10
14秒前
16秒前
文献看不懂应助入戏太深采纳,获得10
16秒前
悲凉的初翠完成签到,获得积分10
17秒前
17秒前
iamddddyh完成签到,获得积分10
17秒前
20秒前
20秒前
21秒前
lilala发布了新的文献求助10
22秒前
22秒前
山川完成签到,获得积分10
24秒前
24秒前
Culto完成签到,获得积分10
24秒前
yudabaoer发布了新的文献求助10
25秒前
25秒前
山川发布了新的文献求助10
27秒前
领导范儿应助活力的雨雪采纳,获得30
27秒前
斯文败类应助mo采纳,获得10
31秒前
bettersy完成签到,获得积分10
32秒前
wy.he应助Betty采纳,获得10
33秒前
尔蝶完成签到 ,获得积分10
33秒前
xiaoxie完成签到,获得积分20
33秒前
畅畅完成签到 ,获得积分10
34秒前
安安完成签到 ,获得积分10
38秒前
39秒前
40秒前
kitty123完成签到,获得积分10
40秒前
迷人嫣然完成签到,获得积分10
40秒前
娇气的春天完成签到 ,获得积分10
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776524
求助须知:如何正确求助?哪些是违规求助? 3322078
关于积分的说明 10208657
捐赠科研通 3037336
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757878