Masked Swin Transformer Unet for Industrial Anomaly Detection

异常检测 人工智能 计算机科学 模式识别(心理学) 变压器 卷积神经网络 异常(物理) 背景(考古学) 计算机视觉 工程类 地质学 凝聚态物理 电气工程 物理 古生物学 电压
作者
Jielin Jiang,Jiale Zhu,Muhammad Bilal,Yan Cui,Neeraj Kumar,Ruihan Dou,Feng Su,Xiaolong Xu
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (2): 2200-2209 被引量:79
标识
DOI:10.1109/tii.2022.3199228
摘要

The intelligent detection process for industrial anomalies employs artificial intelligence methods to classify images that deviate from a normal appearance. Traditional convolutional neural network (CNN)-based anomaly detection algorithms mainly use the network to restructure abnormal areas and detect anomalies by calculating the errors between the original image and reconstructed image. However, the traditional CNNs struggle to extract global context information, resulting in poor anomaly detection performance. Thus, a masked Swin Transformer Unet (MSTUnet) for anomaly detection is proposed. To solve the problem of insufficient abnormal samples in the training phase, an anomaly simulation and mask strategy is first applied on anomaly-free samples to generate a simulated anomaly and, then, the Swin Transformer's powerful global learning ability is used to inpaint the masked area. Finally, a convolution-based Unet network is used for end-to-end anomaly detection. Experimental results on industrial dataset MVTec AD show that MSTUnet achieves superior anomaly detection and localization performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺利莛完成签到,获得积分20
5秒前
6秒前
6秒前
young完成签到,获得积分10
9秒前
11秒前
12秒前
淡淡的绮完成签到,获得积分20
12秒前
13秒前
14秒前
安静笑晴完成签到,获得积分10
14秒前
babalala发布了新的文献求助10
16秒前
18秒前
zhoumaoyuan发布了新的文献求助10
20秒前
gou发布了新的文献求助10
21秒前
22秒前
22秒前
默默若枫完成签到,获得积分10
23秒前
Akim应助科研通管家采纳,获得10
24秒前
爆米花应助科研通管家采纳,获得10
24秒前
斯文败类应助科研通管家采纳,获得10
25秒前
小小博应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
25秒前
Jasper应助科研通管家采纳,获得10
25秒前
Jasper应助hu采纳,获得10
26秒前
Liu应助gou采纳,获得10
29秒前
慕青应助gou采纳,获得10
29秒前
爆米花应助zhoumaoyuan采纳,获得50
30秒前
30秒前
coolkid应助guojingjing采纳,获得10
30秒前
curry完成签到,获得积分10
31秒前
31秒前
34秒前
36秒前
36秒前
jiajia完成签到 ,获得积分10
38秒前
znn123发布了新的文献求助10
39秒前
40秒前
hu发布了新的文献求助10
41秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Sellars and Davidson in Dialogue 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3942380
求助须知:如何正确求助?哪些是违规求助? 3487660
关于积分的说明 11044653
捐赠科研通 3218059
什么是DOI,文献DOI怎么找? 1778763
邀请新用户注册赠送积分活动 864413
科研通“疑难数据库(出版商)”最低求助积分说明 799438