Atrial Fibrillation Treatment Stratification Based on Artificial Intelligence‐Driven Analysis of the Electrophysiological Complexity

医学 心房颤动 心脏病学 内科学 烧蚀 导管消融
作者
A Nava,Santiago Ros,Alejandro Carta,Esteban González‐Torrecilla,Ana González Mansilla,Javier Bermejo,Ángel Arenal,Andreu M. Climent,María S. Guillem,Felipe Atienza
出处
期刊:Journal of Cardiovascular Electrophysiology [Wiley]
标识
DOI:10.1111/jce.16754
摘要

Atrial Fibrillation (AF) treatment strategies are suboptimal and clinical predictors of success are limited. Artificial Intelligence (AI) has arisen as a powerful tool for treatment efficacy prediction. We developed an AI-driven platform for the stratification of patients based on noninvasive Electrocardiographic Imaging (ECGI) biomarkers and clinical parameters to evaluate and predict optimal patient treatment. We evaluated 204 patients treated according to clinical guidelines and characterized them at the electrophysiological level using ECGI recordings during AF. ECGI signals were calculated to obtain frequency and rotational biomarkers. Baseline clinical characteristics and treatment after inclusion were registered. A clustering algorithm was calibrated taking three different variables for 1 year outcome prediction: (1) AF type (paroxysmal or persistent); (2) ECGI complexity score (calculated based on highest dominant frequency, median dominant frequency, and mean rotor time); and (3) type of treatment: rhythm control (drugs, AF ablation) or rate control. The cluster analysis classified patients into five groups: Low electrophysiological complexity patterns were associated with an improved outcome after ablation, regardless of the time duration of the AF. Intermediate complexity scores in paroxysmal AF had a favourable outcome with rhythm control treatments, but not in persistent AF patients. Cluster patterns with higher electrophysiological complexity were associated with a higher probability of AF recurrence, both in paroxysmal and persistent groups. The performance of the algorithm predicting the outcome was (AUC: 0.73 (0.63-0.81)), increasing overall performance with respect to conventional persistent and paroxysmal classification (AUC: 0.58 (0.48-0.68); p < 0.05). This algorithm was evaluated on the 20% test set, obtaining 90% prediction success. AI-driven analysis that combined clinical information with ECGI biomarkers increased the performance of conventional classification methods for AF treatment stratification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
panda完成签到,获得积分0
1秒前
qiancib202完成签到,获得积分10
7秒前
山楂完成签到,获得积分10
10秒前
成就双双完成签到,获得积分10
10秒前
怡然白竹完成签到 ,获得积分10
12秒前
jjjj完成签到,获得积分20
13秒前
kyle完成签到 ,获得积分10
15秒前
CGFHEMAN完成签到 ,获得积分10
17秒前
21秒前
wyh295352318完成签到 ,获得积分10
22秒前
hi完成签到 ,获得积分10
22秒前
可靠的lld完成签到 ,获得积分10
22秒前
yongtt完成签到,获得积分20
24秒前
巴达天使完成签到,获得积分10
24秒前
yongtt发布了新的文献求助10
27秒前
等待的幼晴完成签到,获得积分10
27秒前
研友_西门孤晴完成签到,获得积分10
32秒前
QSJ完成签到,获得积分10
35秒前
胖胖橘完成签到 ,获得积分10
37秒前
41秒前
飞云完成签到 ,获得积分10
44秒前
yanxuhuan完成签到 ,获得积分10
45秒前
EVE完成签到,获得积分10
51秒前
xiying完成签到 ,获得积分10
52秒前
xfy完成签到,获得积分10
54秒前
冰霜雨露完成签到 ,获得积分10
1分钟前
小伊001完成签到,获得积分10
1分钟前
王饱饱完成签到 ,获得积分10
1分钟前
顾念完成签到 ,获得积分10
1分钟前
Zhusy完成签到 ,获得积分10
1分钟前
lala完成签到,获得积分10
1分钟前
nianshu完成签到 ,获得积分10
1分钟前
alixy完成签到,获得积分10
1分钟前
cq_2完成签到,获得积分10
1分钟前
1分钟前
123123完成签到,获得积分10
1分钟前
医学耗材完成签到 ,获得积分10
1分钟前
娇娇大王完成签到,获得积分10
1分钟前
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3946214
求助须知:如何正确求助?哪些是违规求助? 3491121
关于积分的说明 11059007
捐赠科研通 3222060
什么是DOI,文献DOI怎么找? 1780825
邀请新用户注册赠送积分活动 865866
科研通“疑难数据库(出版商)”最低求助积分说明 800083