清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Optimizing Well Perforation with Machine Learning: A Breakthrough in Predictive Modeling

计算机科学 机器学习 穿孔 人工智能 工程类 机械工程 冲孔
作者
Ahmed Ayman Elhadidy,Ahmed Helmy,Morgan Heikal,Wael Hany
标识
DOI:10.2118/224556-ms
摘要

Abstract The accurate measurement of perforation length is important for better fluid flow and cost management. For the past eight decades, research has focused on well perforators within both ballistics science and energy domains. Past years saw numerous standardized testing and empirical model development to estimate perforation penetration depth under downhole conditions. The existing models possess restricted functionality while needing regular calibration and ignore numerous components that influence the penetration depth of perforations. This research aims to create an adaptable machine learning system based on API-19B standard perforator data obtained from different operational environments for perforation penetration length prediction. The holistic machine learning methodology allowed us to create ten machine learning models from normal perforation operational data that includes shot phasing, shot density, casing grade, casing nominal weight, casing outer diameter, explosive type, temperature rating and explosive weight, cement compressive strength, and gun diameter. The created models utilize penetration lengths directly measured through API-19B Section-01 testing, which serve as their output data. The paper implements Gradient Boosting, AdaBoost, Random Forest, Support Vector Machines, Decision Trees, K-Nearest Neighbor, Linear Regression, Neural Network, and Stochastic Gradient Descent algorithms, which received data from 1,648 actual API-19B Section-01 tests. The dataset consists of 16,480 points, which are divided into two sections where 80% (13,184 points) serve training algorithms and 20% (3,296 points) evaluate their predictive capacity. Moreover, the machine learning model's efficiency is evaluated through both K-fold and random sampling validation techniques. The computation of mean absolute percent error (MAPE) revealed the most effective machine learning models, which included AdaBoost, Random Forest, Gradient Boosting, Neural Network (L-BFGS), and K-Nearest Neighbors at 3.3%, 4.5%, 5.3%, and 8.1%, respectively, compared to actual measurements of perforation penetration length. In addition, the models demonstrate high correlation rates (R²) with 0.92, 0.88, 0.86, 0.84, and 0.69, respectively. This paper presents the operational improvements achieved through using machine learning models for estimating perforation penetration length. A machine learning modeling system provides precise, rapid, and economic estimation of perforation penetration length through an easier approach than either API-19B Section-01 tests or empirical models. These machine learning models have the capability to process multiple gun parameters along with different well completion types, which solved a universal problem that empirical models could not manage.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰凌心恋完成签到,获得积分10
4秒前
12秒前
螃蟹医生发布了新的文献求助10
20秒前
tlh完成签到 ,获得积分10
21秒前
李大宝完成签到 ,获得积分10
22秒前
fzh发布了新的文献求助10
23秒前
默11完成签到 ,获得积分10
26秒前
螃蟹医生完成签到,获得积分10
33秒前
雪茶完成签到 ,获得积分10
34秒前
陈曦完成签到,获得积分10
41秒前
54秒前
柒八染完成签到 ,获得积分10
56秒前
我独舞完成签到 ,获得积分10
1分钟前
MQ完成签到 ,获得积分10
1分钟前
叶颤完成签到,获得积分10
1分钟前
fzh完成签到,获得积分10
1分钟前
苏子轩完成签到 ,获得积分10
1分钟前
谢陈完成签到 ,获得积分10
1分钟前
hi_traffic发布了新的文献求助10
1分钟前
负责冰海完成签到,获得积分10
1分钟前
开朗道天完成签到 ,获得积分10
1分钟前
apckkk完成签到 ,获得积分10
1分钟前
安详映阳完成签到 ,获得积分10
1分钟前
幽月完成签到 ,获得积分10
1分钟前
1分钟前
Fiona完成签到 ,获得积分10
1分钟前
迷人面包完成签到,获得积分10
1分钟前
帝国超级硕士完成签到,获得积分10
1分钟前
1分钟前
Cheney完成签到 ,获得积分10
2分钟前
momo完成签到,获得积分10
2分钟前
2分钟前
灼灼朗朗完成签到,获得积分10
2分钟前
2分钟前
逢投必中完成签到 ,获得积分10
2分钟前
共享精神应助liuzf采纳,获得10
2分钟前
hi_traffic完成签到,获得积分10
2分钟前
qqaeao完成签到,获得积分10
2分钟前
贰鸟完成签到,获得积分0
2分钟前
TY完成签到 ,获得积分10
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792550
求助须知:如何正确求助?哪些是违规求助? 3336777
关于积分的说明 10282126
捐赠科研通 3053544
什么是DOI,文献DOI怎么找? 1675652
邀请新用户注册赠送积分活动 803629
科研通“疑难数据库(出版商)”最低求助积分说明 761468