Scenario Predict-then-Optimize for Data-Driven Online Inventory Routing

布线(电子设计自动化) 计算机科学 运筹学 运输工程 工程类 计算机网络
作者
Menglei Jia,Albert H. Schrotenboer,Feng Chen
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:59 (5): 1032-1056
标识
DOI:10.1287/trsc.2024.0613
摘要

The real-time joint optimization of inventory replenishment and vehicle routing is essential for cost-efficiently operating one-warehouse, multiple-retailer systems. This is complex because future demand predictions should capture (auto)correlation and lumpy retailer demand, and based upon such predictions, inventory replenishment and vehicle-routing decisions must be taken. Traditionally, such decisions are made by either making distributional assumptions or using machine-learning-based point forecasts. The former approach ignores nonstationary demand patterns, whereas the latter approach provides only a point forecast ignoring the inherent forecast error. Consequently, in practice, service levels often do not meet their targets, and truck fill rates fall short, harming the efficiency and sustainability of daily operations. We propose Scenario Predict-then-Optimize. This fully data-driven approach for online inventory routing consists of two subsequent steps at each real-time decision epoch. The scenario-predict step exploits neural networks—specifically multi-horizon quantile recurrent neural networks—to predict future demand quantiles, upon which we design a scenario sampling approach. The subsequent scenario-optimize step then solves a scenario-based two-stage stochastic programming approximation. Results show that our approach outperforms a classic sequential learning and (stochastic) optimization approach, distributional approaches, empirical sampling methods, residuals-based sample average approximation, and a state-of-the-art integrated learning and (stochastic) optimization approach. We show this on both synthetic data and large-scale real-life data from our industry partner. Our approach is appealing to practitioners. It is fast, does not rely on any distributional assumption, and does not face the burden of single-scenario forecasts. It also outperforms residuals-based scenario generation techniques. We show that it is robust for various demand and cost parameters, enhancing the efficiency and sustainability of daily inventory replenishment and truck-routing decisions. Finally, scenario Predict-then-Optimize is general and can be easily extended to account for other operational constraints, making it a useful tool in practice. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2024.0613 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
somus1997完成签到,获得积分10
刚刚
1秒前
Jasper应助么么叽采纳,获得10
1秒前
1秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
Dong发布了新的文献求助10
3秒前
宴究生完成签到,获得积分10
3秒前
Ava应助晓晓采纳,获得30
4秒前
康康发布了新的文献求助10
4秒前
4秒前
我是老大应助整箱采纳,获得10
4秒前
慕青应助开朗四娘采纳,获得10
5秒前
cuber完成签到 ,获得积分10
5秒前
麦子发布了新的文献求助10
5秒前
妤懿完成签到 ,获得积分10
7秒前
完美世界应助11采纳,获得10
7秒前
危机的尔芙完成签到,获得积分10
7秒前
7秒前
hchnb1234发布了新的文献求助20
7秒前
霸气谷蕊完成签到,获得积分10
8秒前
乐乐应助remake441采纳,获得10
8秒前
顾矜应助zzyytt采纳,获得10
9秒前
9秒前
fang发布了新的文献求助10
9秒前
9秒前
小金子发布了新的文献求助10
9秒前
10秒前
Twonej应助岁月在前进采纳,获得30
11秒前
清脆大树完成签到,获得积分10
11秒前
12秒前
13秒前
我是老大应助宴究生采纳,获得10
13秒前
清风明月完成签到,获得积分10
13秒前
嘿嘿完成签到,获得积分10
13秒前
长情访梦发布了新的文献求助10
14秒前
Criminology34应助坦率灵煌采纳,获得10
14秒前
充电宝应助morena采纳,获得10
15秒前
乐乐完成签到,获得积分10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5712864
求助须知:如何正确求助?哪些是违规求助? 5212603
关于积分的说明 15268873
捐赠科研通 4864679
什么是DOI,文献DOI怎么找? 2611584
邀请新用户注册赠送积分活动 1561888
关于科研通互助平台的介绍 1519133