清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Scenario Predict-then-Optimize for Data-Driven Online Inventory Routing

布线(电子设计自动化) 计算机科学 运筹学 运输工程 工程类 计算机网络
作者
Menglei Jia,Albert H. Schrotenboer,Feng Chen
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/trsc.2024.0613
摘要

The real-time joint optimization of inventory replenishment and vehicle routing is essential for cost-efficiently operating one-warehouse, multiple-retailer systems. This is complex because future demand predictions should capture (auto)correlation and lumpy retailer demand, and based upon such predictions, inventory replenishment and vehicle-routing decisions must be taken. Traditionally, such decisions are made by either making distributional assumptions or using machine-learning-based point forecasts. The former approach ignores nonstationary demand patterns, whereas the latter approach provides only a point forecast ignoring the inherent forecast error. Consequently, in practice, service levels often do not meet their targets, and truck fill rates fall short, harming the efficiency and sustainability of daily operations. We propose Scenario Predict-then-Optimize. This fully data-driven approach for online inventory routing consists of two subsequent steps at each real-time decision epoch. The scenario-predict step exploits neural networks—specifically multi-horizon quantile recurrent neural networks—to predict future demand quantiles, upon which we design a scenario sampling approach. The subsequent scenario-optimize step then solves a scenario-based two-stage stochastic programming approximation. Results show that our approach outperforms a classic sequential learning and (stochastic) optimization approach, distributional approaches, empirical sampling methods, residuals-based sample average approximation, and a state-of-the-art integrated learning and (stochastic) optimization approach. We show this on both synthetic data and large-scale real-life data from our industry partner. Our approach is appealing to practitioners. It is fast, does not rely on any distributional assumption, and does not face the burden of single-scenario forecasts. It also outperforms residuals-based scenario generation techniques. We show that it is robust for various demand and cost parameters, enhancing the efficiency and sustainability of daily inventory replenishment and truck-routing decisions. Finally, scenario Predict-then-Optimize is general and can be easily extended to account for other operational constraints, making it a useful tool in practice. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2024.0613 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GPTea应助科研通管家采纳,获得10
1分钟前
小土豆完成签到 ,获得积分10
1分钟前
喜悦的香之完成签到 ,获得积分10
1分钟前
心想事成完成签到 ,获得积分10
1分钟前
2分钟前
激动的似狮完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
慕青应助科研通管家采纳,获得10
3分钟前
老迟到的友桃完成签到 ,获得积分10
3分钟前
随心所欲完成签到 ,获得积分10
4分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
4分钟前
动听夏波完成签到,获得积分20
4分钟前
欣欣完成签到 ,获得积分10
5分钟前
爆米花应助zizideng采纳,获得10
6分钟前
机智的孤兰完成签到 ,获得积分10
6分钟前
6分钟前
孤独剑完成签到 ,获得积分10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
7分钟前
zizideng发布了新的文献求助10
7分钟前
zizideng完成签到,获得积分10
7分钟前
8分钟前
唐泽雪穗发布了新的文献求助10
8分钟前
科研通AI6应助cy4psych0采纳,获得10
9分钟前
10分钟前
cy4psych0发布了新的文献求助10
10分钟前
正己化人应助科研通管家采纳,获得20
11分钟前
卓天宇完成签到,获得积分10
11分钟前
Yuki完成签到 ,获得积分10
12分钟前
kbcbwb2002完成签到,获得积分10
12分钟前
正己化人应助科研通管家采纳,获得10
13分钟前
老石完成签到 ,获得积分10
13分钟前
13分钟前
Kamalika完成签到,获得积分10
14分钟前
yuans发布了新的文献求助10
15分钟前
meeteryu完成签到,获得积分10
15分钟前
yuans完成签到,获得积分10
15分钟前
安雨笙完成签到,获得积分10
15分钟前
ZXD1989完成签到 ,获得积分10
15分钟前
太微北完成签到,获得积分10
16分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5199633
求助须知:如何正确求助?哪些是违规求助? 4380120
关于积分的说明 13638832
捐赠科研通 4236595
什么是DOI,文献DOI怎么找? 2324186
邀请新用户注册赠送积分活动 1322167
关于科研通互助平台的介绍 1273529