Horizontal Gene Transfer Systems for Spread of Antibiotic Resistance in Gram‐Negative Bacteria

水平基因转移 质粒 生物 细菌 转导(生物物理学) 遗传学 抗生素耐药性 微生物学 细菌遗传学 基因 DNA 转座因子 流动遗传元素 抗生素 革兰氏阴性菌 基因组 大肠杆菌 生物化学
作者
Jun‐ichi Wachino
出处
期刊:Microbiology and Immunology [Wiley]
被引量:1
标识
DOI:10.1111/1348-0421.13222
摘要

ABSTRACT Antibiotic‐resistant bacteria have become a significant global threat to public health due to the increasing difficulty in treatment. These bacteria acquire resistance by incorporating various antibiotic resistance genes (ARGs) through specialized gene transfer mechanisms, allowing them to evade antibiotic attacks. Conjugation, transformation, and transduction are well‐established mechanisms that drive the acquisition and dissemination of ARGs in Gram‐negative bacteria. In particular, the horizontal transfer of plasmids carrying multiple ARGs is highly problematic, as it can instantly convert susceptible bacteria into multidrug‐resistant ones. Transduction, mediated by bacteriophages that package ARG‐containing chromosomal DNA from host cells, also plays a crucial role in ARG spread without requiring direct cell‐to‐cell contact. Recently, a novel horizontal gene transfer (HGT) mechanism involving outer membrane vesicles (OMVs) has been identified as a key player in ARG dissemination. OMVs—nanoscale, spherical structures produced by bacteria during growth—have been found to carry small plasmids and chromosomal DNA fragments containing ARGs from their host bacteria. This newly discovered transfer process, termed “vesiduction,” enables intercellular DNA exchange and further contributes to the spread of antibiotic resistance. Additionally, mobile genetic elements such as transposons, insertion sequences, and site‐specific recombination systems like integrons facilitate rearrangement of ARGs, including their translocation between chromosomes and plasmids. This review explores the molecular mechanisms underlying the HGT of ARGs, with a particular focus on clinically isolated antibiotic‐resistant Gram‐negative bacteria.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xiaxia发布了新的文献求助10
1秒前
英姑应助亚黑采纳,获得10
1秒前
2秒前
2秒前
kingwill举报sssss求助涉嫌违规
3秒前
杜若发布了新的文献求助10
4秒前
小小发布了新的文献求助10
5秒前
无花果应助悲凉的笑卉采纳,获得10
6秒前
浮游应助榴莲柿子茶采纳,获得10
6秒前
大个应助榴莲柿子茶采纳,获得10
6秒前
kou发布了新的文献求助10
6秒前
123应助南南采纳,获得10
7秒前
邵宏伟应助南南采纳,获得20
7秒前
7秒前
555发布了新的文献求助10
7秒前
Hanqi完成签到 ,获得积分10
7秒前
明明完成签到,获得积分10
8秒前
8秒前
LL完成签到,获得积分10
8秒前
8秒前
8秒前
gk发布了新的文献求助10
9秒前
ding应助大熊采纳,获得10
11秒前
11秒前
keep完成签到 ,获得积分10
11秒前
高高发布了新的文献求助10
12秒前
13秒前
Orange应助sy采纳,获得60
13秒前
badercao完成签到,获得积分10
13秒前
钙钛矿-1发布了新的文献求助10
14秒前
蔡徐坤完成签到,获得积分10
14秒前
亚黑发布了新的文献求助10
14秒前
杜若完成签到,获得积分20
14秒前
15秒前
周士乐完成签到,获得积分10
16秒前
沉默的不惜完成签到,获得积分10
17秒前
17秒前
英姑应助橘涂采纳,获得10
18秒前
科研通AI5应助cocj采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194515
求助须知:如何正确求助?哪些是违规求助? 4376780
关于积分的说明 13630290
捐赠科研通 4231860
什么是DOI,文献DOI怎么找? 2321258
邀请新用户注册赠送积分活动 1319419
关于科研通互助平台的介绍 1269800