Rapid Dynamical Pattern Classification via Deterministic Learning From Sampling Sequences

采样(信号处理) 计算机科学 人工智能 模式识别(心理学) 计算机视觉 滤波器(信号处理)
作者
Weiming Wu,Zhirui Li,Chen Sun,Cong Wang,Guanrong Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (9): 16005-16019
标识
DOI:10.1109/tnnls.2025.3565535
摘要

This article is concerned with the rapid classification issue for dynamical patterns consisting of sampling sequences in a relatively large-scale dynamical dataset constructed by benchmark Rossler systems. Specifically, based on a recently developed deterministic learning mechanism, a rapid dynamical pattern classification method is developed, which contains a modeling stage and a classification stage. In the modeling stage, a deterministic learning scheme is employed to accurately learn/model the inherent dynamics of the training dynamical patterns and store the acquired knowledge in a set of constant radial basis function (RBF) networks. In the classification stage, based on the trained RBF networks, a set of dynamical estimators is developed for real-time dynamic comparison. The generating recognition errors are then used to effectively represent the dynamic differences in real-time. To this end, the associated class label of the minimum recognition error is assigned to the test pattern also in real-time. To demonstrate the effectiveness of the proposed method, a relatively large-scale dynamical pattern dataset containing various dynamical behaviors is constructed by utilizing a deterministic chaos prospector (DCP) technique. The simulation results show that the new method achieves competitive classification performances compared to the state-of-the-art time-series classification method for the dynamical system classification task. In addition to performance advantages, the new method can perform real-time time-series classification with the first 10% of data achieving over 95% of accuracy based on the full-length data. Besides, the superiority of our method is demonstrated from various datasets in the UCR time-series classification (TSC) archive.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助张之晟采纳,获得10
刚刚
和水完成签到 ,获得积分10
1秒前
2秒前
灰烬完成签到,获得积分10
4秒前
4秒前
wanci应助Lucy采纳,获得10
4秒前
耍酷的熠彤完成签到,获得积分10
5秒前
ding应助好好学习采纳,获得10
6秒前
洋芋擦擦完成签到 ,获得积分10
7秒前
江湖樊南生完成签到,获得积分10
7秒前
颖火虫发布了新的文献求助10
8秒前
9秒前
10秒前
Hello应助lzl采纳,获得10
11秒前
小小酥被卷了完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
15秒前
15秒前
16秒前
17秒前
19秒前
Lliu应助江湖樊南生采纳,获得10
19秒前
19秒前
19秒前
bb发布了新的文献求助10
20秒前
20秒前
21秒前
独特四娘发布了新的文献求助10
21秒前
22秒前
酷酷夜阑发布了新的文献求助10
22秒前
SciGPT应助哈哈采纳,获得10
22秒前
23秒前
lyh发布了新的文献求助10
23秒前
xc发布了新的文献求助10
24秒前
25秒前
Qian发布了新的文献求助10
26秒前
寂寞的灵发布了新的文献求助30
26秒前
忐忑的猪发布了新的文献求助10
26秒前
好好学习发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513749
求助须知:如何正确求助?哪些是违规求助? 4607907
关于积分的说明 14507245
捐赠科研通 4543447
什么是DOI,文献DOI怎么找? 2489580
邀请新用户注册赠送积分活动 1471533
关于科研通互助平台的介绍 1443552