Revealing Herb-Symptom Associations and Mechanisms of Action in Protein Networks Using Subgraph Matching Learning

计算机科学 匹配(统计) 人工智能 动作(物理) 计算生物学 机器学习 数学 生物 统计 量子力学 物理
作者
Menglu Li,Yongkang Wang,Yujing Ni,Hui Xiong,Zhinan Mei,Wen Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-8
标识
DOI:10.1109/jbhi.2025.3554520
摘要

In traditional Chinese medicine, deciphering herb-symptom associations (HSAs) and revealing their mechanisms of action are crucial for bridging traditional knowledge and modern biomedicine. While previous studies have investigated HSAs using protein-protein interaction (PPI)-based network medicine method, they often treat all proteins equally, failing to capture the heterogeneous contributions of individual proteins to HSAs. This limitation hinders their capacity to reveal the mechanisms of action. To address this challenge, we propose a subgraph matching learning method, GraphHSA, for HSA prediction. GraphHSA maps herbs and symptoms onto the PPI network to construct subgraphs. Then, GraphHSA utilizes an attention mechanism to compute the importance of each protein on the subgraph, and weighted aggregate protein information to generate herb/symptom embeddings. Subsequently, these embeddings are combined to model the matching relationship between herb and symptom subgraphs, enabling association prediction. Additionally, a dual-contrastive learning strategy is introduced to generate discriminative representations to enhance prediction. Experiments indicate that GraphHSA not only applies to individual herbs but also extends to compound formulations composed of multiple herbs. By capturing the dynamic interactions among their components, GraphHSA enables the identification of key biological targets and the elucidation of the mechanisms underlying their therapeutic efficacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
tfq200发布了新的文献求助10
1秒前
2秒前
lzk完成签到,获得积分10
2秒前
小蘑菇应助yangfeidong采纳,获得10
3秒前
zzz发布了新的文献求助10
4秒前
失眠醉易应助xiaobai采纳,获得20
5秒前
AhhHuang应助学术垃圾采纳,获得10
5秒前
JiangnanYuan发布了新的文献求助10
6秒前
大强发布了新的文献求助10
7秒前
7秒前
7秒前
852应助tfq200采纳,获得10
8秒前
SW完成签到,获得积分10
8秒前
10秒前
12秒前
pphhhhaannn发布了新的文献求助10
12秒前
13秒前
13秒前
luelue完成签到,获得积分10
13秒前
14秒前
852应助Gary采纳,获得30
15秒前
科研通AI5应助傢誠采纳,获得10
15秒前
16秒前
16秒前
16秒前
17秒前
17秒前
BulingQAQ完成签到,获得积分20
17秒前
阿托品完成签到,获得积分10
17秒前
常冬寒发布了新的文献求助10
17秒前
大强发布了新的文献求助10
18秒前
卡卡西应助JiangnanYuan采纳,获得10
18秒前
19秒前
wei发布了新的文献求助10
19秒前
傲娇黄豆完成签到,获得积分10
20秒前
21秒前
史夏兰发布了新的文献求助10
21秒前
21秒前
香蕉觅云应助Yi采纳,获得10
21秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814481
求助须知:如何正确求助?哪些是违规求助? 3358577
关于积分的说明 10396143
捐赠科研通 3075886
什么是DOI,文献DOI怎么找? 1689593
邀请新用户注册赠送积分活动 813087
科研通“疑难数据库(出版商)”最低求助积分说明 767504