锂(药物)
热的
离子
材料科学
环境科学
计算机科学
化学
心理学
热力学
物理
有机化学
精神科
作者
Tianyu Gong,Xixin Duan,Yan Shan,Lang Huang
出处
期刊:Batteries
[Multidisciplinary Digital Publishing Institute]
日期:2025-04-13
卷期号:11 (4): 152-152
标识
DOI:10.3390/batteries11040152
摘要
Gas evolution in lithium-ion batteries represents a pivotal yet underaddressed concern, significantly compromising long-term cyclability and safety through complex interfacial dynamics and material degradation across both normal operation and extreme thermal scenarios. While extensive research has focused on isolated gas generation mechanisms in specific components, critical knowledge gaps persist in understanding cross-component interactions and the cascading failure pathways it induced. This review systematically decouples gas generation mechanisms at cathodes (e.g., lattice oxygen-driven CO2/CO in high-nickel layered oxides), anodes (e.g., stress-triggered solvent reduction in silicon composites), electrolytes (solvent decomposition), and auxiliary materials (binder/separator degradation), while uniquely establishing their synergistic impacts on battery stability. Distinct from prior modular analyses, we emphasize that: (1) emerging systems exhibit fundamentally different gas evolution thermodynamics compared to conventional materials, exemplified by sulfide solid electrolytes releasing H2S/SO2 via unique anionic redox pathways; (2) gas crosstalk between components creates compounding risks—retained gases induce electrolyte dry-out and ion transport barriers during cycling, while combustible gas–O2 mixtures accelerate thermal runaway through chain reactions. This review proposes three key strategies to suppress gas generation: (1) oxygen lattice stabilization via dopant engineering, (2) solvent decomposition mitigation through tailored interphases engineering, and (3) gas-selective adaptive separator development. Furthermore, it establishes a multiscale design framework spanning atomic defect control to pack-level thermal management, providing actionable guidelines for battery engineering. By correlating early gas detection metrics with degradation patterns, the work enables predictive safety systems and standardized protocols, directly guiding the development of reliable high-energy batteries for electric vehicles and grid storage.
科研通智能强力驱动
Strongly Powered by AbleSci AI